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Abstract

Europe is undertaking projects for near real-time common balancing markets to meet the flexi-

bility needs induced by renewable deployment. A new congestion management method, bid filtering,

has been authorized by regulation to prevent unsolvable last minute congestion. It is designed to

manage internal congestion and is performed by each Transmission System Operator (TSO) sepa-

rately without knowledge of bids in other zones. Bids from all zones are shared in the same market,

which means filtering from one TSO could affect welfare in other zones, depending on its objective

and on regulation. This paper evaluates the potential effects of multiple TSOs interacting with dif-

ferent filtering strategies. Three TSO strategies are considered - Benevolent, Local, and Conservative

- and different combinations are tested using multi-agent reinforcement learning. Results show that

although several TSOs filtering benevolently leads to the highest net Social Welfare, it is unlikely that

all TSOs will adopt this strategy considering political and social constraints in EU27 countries. We

discuss several regulatory options to create the conditions for a Social Welfare-maximizing filtering

and foster coordination between TSOs.

Keywords— Electricity networks, balancing markets, congestion management, European inte-

gration, filtering, multi-agent reinforcement learning

Highlights

• Real-time European balancing market are a new source of congestion

• Filtering is a congestion management method that screens bids pre-market

• Filtering is performed separately by TSOs but results are shared in the same market

• The interaction and different strategies of TSOs within filtering are studied

• Regulation is advised to foster coordination and ensure Social Welfare-maximization
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1 Introduction

Integrating electricity markets and managing congestion are two of the main challenges in Europe to

successfully deploy renewables and decarbonize the energy sector (International Energy Agency, 2024).

The next steps in market integration are the current projects for common balancing markets, which will

help manage renewables and new flexibility technologies near real-time. These markets will be run on

the European scale, a few minutes before real-time. Balancing markets and network management will

take place almost simultaneously, which has never been done before on so large a scale. This technical

exploit may thus create new constraints in terms of congestion management.

The European projects for manual balancing markets are TERRE1 for Replacement Reserve (RR) and

MARI2 for manual Frequency Restoration Reserve (mFRR). In these markets, bids and TSO needs from

participating zones are shared and selected according to a common merit order list. TERRE went live in

January 2020, and 6 TSOs have connected since (ENTSO-E, 2023). The technical go-live of MARI was

in September 2022, but most TSOs are expected to connect in 2024 (ENTSO-E, 2020).

A new congestion management method, bid filtering, was introduced by regulation to face this unprece-

dented situation. It enables Transmission System Operators (TSOs) to remove some bids from the market

if they are expected to create congestion. The method aims to avoid major unresolved congestion post-

market, as, given the short timing, no levers may be left to solve it. Although the market clearing is

common across Europe, filtering is designed to manage internal constraints, and performed by each TSO

separately. TSOs are allowed to filter bids only in their zone, with no information about bids in other

zones.

Several methodologies for filtering in the context of European balancing markets are described in the

literature. (Guntermann et al., 2018) add bids one by one in the merit order to a network forecast and

test if the network remains secure. If it does not remain secure, the bid is removed from the merit

order. A similar method was used as a baseline in (Girod et al., 2024). (Doorman et al., 2022) run

a DC Optimal Power Flow over the zone with all submitted bids and exchange forecasts: if a bid is

activated outside of the merit order, it helps reduce congestion and should be advantaged; if a bid is

not activated although it should have been given the merit order, it increases congestion and should be

disadvantaged. (Papavasiliou et al., 2020) present an alternative to filtering, where TSOs run Optimal

Power Flows to create a residual function for the zone: the function replaces individual bids and defines

a price per activated volume in the zone. In (Girod et al., 2024), a new, continuous method for filtering

was presented and evaluated. It adds a price delta to bid prices, reflecting the cost of physical delivery

to advantage/disadvantage bids that reduce/increase congestion. The price deltas are determined using

reinforcement learning (RL). (Girod et al., 2024) showed on a year of data on an updated IEEE-96

network that this filtering method increases net Social Welfare compared to a baseline filtering or no

filtering and helped avoid load shedding. It is therefore the filtering method applied in this paper, and

hereafter named ’Proposed filtering’.

Even if it is zone-specific and performed by each TSO separately, zones are not isolated and filtering

necessarily interacts with the rest of the balancing process. As bids modified by filtering are shared in a

common market, filtering in one zone may heavily impact the merit order list and the resulting dispatch

for all zones, thereby affecting both their market welfare and congestion management costs. Furthermore,

if several TSOs filter, these processes interact: a bid in one zone may for example have more value than

initially expected and may not be worth filtering if the neighboring TSO has heavily filtered at that hour,

leading to less liquidity on the market and potentially lower congestion risk. The interaction between

1Trans European Replacement Reserves Exchange
2Manually Activated Reserves Initiative
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TSOs in the case of filtering may be more pronounced with Proposed filtering as TSOs are given more

freedom - they have a continuous set of actions and can advantage a bid as well as disadvantage it. Several

TSOs filtering separately could thereby lead to complementary or conflicting positions. This could be

reinforced by different filtering strategies: some TSOs may have other objectives than maximizing Social

Welfare over all zones. To the best of our knowledge, the interaction and strategies of TSOs in filtering

has not yet been studied.

(Girod et al., 2024) studied a case with one TSO filtering, and the TSO aimed to maximize net Social

Welfare over all zones. In this paper, we evaluate the impact of several TSOs filtering and with different

objectives. We evaluate whether or not several TSOs filtering is also beneficial for the global system, for

separate zones and for individual TSOs. We also determine which conditions are more favorable and if

regulation is necessary to bring them about.

We set up a simulation where several TSOs apply Proposed filtering separately and results are shared

in the same balancing market. Multi-agent RL is used to train separate TSOs that impact the same

simulation environment. In practice, this entails that TSOs can learn to react to strategies employed by

other TSOs. Three TSO strategies are defined: a Benevolent TSO that aims to maximize global Social

Welfare, a Local TSO that aims to maximize Social Welfare in its zone, and a Conservative TSO that

aims to minimize its costs. Different combinations of strategies are tested on the simulation environment.

There are three contributions in this paper: (i) we define three objective functions for TSOs; (ii) we

simulate several TSOs filtering simultaneously using multi-agent RL and test different combinations of

TSO strategies; (iii) given the results, we recommend regulating filtering to create conditions for TSOs

to maximize Social Welfare and favour TSO coordination and discuss different solutions.

This paper is organized as follows: section 2 describes the methodology, section 3 introduces the case

study, section 4 presents and discusses results, and section 5 concludes and details policy implications.

2 Methodology

In this paper, we analyze the impact of several TSOs filtering, with different objectives. Filtering is

performed separately by TSOs in their zone: each TSO can only filter bids in its zone and does not have

information about bids in the other zones. TSOs can choose to filter bids in their zone with different

strategies. Section 2.1 describes the studied strategies, section 2.2 details the filtering method used and

section 2.3 presents the simulation environment. All acronyms and notations are detailed in appendix A.

2.1 Studied strategies

Three TSO strategies are studied: the Benevolent TSO with limited information, the Local TSO and

the Conservative TSO. The strategies are detailed respectively in sections 2.1.1, 2.1.2 and 2.1.3. The

Benevolent TSO aims to maximize net Social Welfare over all zones in the market, the Local TSO

maximizes local Social Welfare i.e. net Social Welfare in its own zone, and the Conservative TSO only

minimizes its costs. A fourth strategy, Do Nothing, is added as a baseline. In this case, the TSO does not

filter. Table 1 summarizes the objective and reward given to the RL agent for different TSO strategies.

2.1.1 Benevolent TSO with limited information

Net Social Welfare is defined here as market welfare minus congestion management costs. This metric

reflects the balance between finding the dispatch that best satisfies market players and maintaining
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Table 1: Studied variants

Do
Nothing

Benevolent TSO Local TSO Conservative TSO

Objective No filtering
Maximize net
Social Welfare
over all zones

Maximize net Social
Welfare in own zone

Minimize TSO costs

Reward NA
Market welfare -

congestion
management costs

Local market welfare
- local congestion
management costs

- ( TSO balancing costs
+ compensation + local
congestion management

costs)

security, considering remedial actions to solve potential congestion and load shedding in the worst case.

Market welfare is computed without TSO demand as the demand price is an arbitrary value3 that has

a strong impact on numerical results but no impact on variant ranking. Congestion management costs

are the sum of redispatch costs and load shedding costs. Because demand is not included, the only

varying parameter in net Social Welfare is production cost (including redispatch and load shedding

costs). Maximizing net Social Welfare in this case is therefore equivalent to minimizing total costs. The

objective function of the Benevolent TSO is the same as in (Girod et al., 2024) and can be written as:

max
s0→a1→s1→a2→...→aN−1→sN

N∑
t=1

nSWt = f(st, at) (1)

with

f(st, at) = M(Qt, Pt + at, ATCt)− SA(M(t, at), Lt,MC). (2)

Where for time step i, nSWi is the net Social Welfare, si is the network state, ai = (a0, . . . , ab) is the

filtering action4 a price delta for all b bids emitted in all zones at t = i. If bid j is not in the zone of the

considered TSO, aj = 0. In the RL framework, a state leads to an action, which leads to a new state etc.

The RL agent gets an observation - a snapshot of the state - in order to take its action.

Qi = (q0, . . . , qb) are the volumes offered and Pi = (p0, . . . , pb) are the bid prices for all b bids emitted in

all zones, ATCi = (atc0, . . . , atc2z) are cross-border capacities between z borders and Li = (l0, . . . , ln) is

the load at n nodes of the network. N is the number of hours in a year and MC = (mc0, . . . ,mcg) are

marginal costs for the g generators of the network.

M(t) is the market outcome, which consists of market welfare, market price and production levels of

generators. SA(t) is the security analysis outcome. It depends on the production level of generators

determined by the market.

Initial prices Pt are used to compute net Social Welfare as we want to represent actual generator costs,

reflected in initial prices, and not financial transactions, which is what modified prices Pt + at represent.

Market welfare can be written as

M(t, a(t)) = −
∑
b∈B

q∗b × pb × σb (3)

3Demand is always met - if not by the market, by the security analysis (with load shedding in the worst case) so adding
TSO demand welfare in the market welfare computation would only shift results by a significant yet irrelevant constant.

4In the interest of clarity, the choice has been made not to display the time dependence on variables internal to sets.
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with B the set of bids emitted in all zones, q∗b the accepted volume of bid b and σb its sign: 1 for an

upward bid, -1 for a downward bid. Here, q∗b depends on the filtering action at, which modified the

position of bids in the merit order.

2.1.2 Local TSO

The Local TSO aims to maximize local welfare, defined here as local market welfare minus local congestion

managements costs. Local market welfare is the welfare of balancing bids accepted in the zone, as well

as the demand of the local TSO. TSO demand is not included in net Social Welfare but is in local Social

Welfare because the local system is not closed: TSO demand may be met by a bid or redispatch from

another zone that would not be counted in local market welfare otherwise. This point carries substantial

weight and its impact is discussed in section 4.1. Local congestion management costs are the sum of

redispatch and load shedding costs in the zone. Thus, the objective of the Local TSO can be written as:

max
s0→a1→s1→...→sN

N∑
t=1

lWt = g(st, at) (4)

with

g(st, at) = lMz(M(t, at))− lSAz(M(t, at), Lt,MC) (5)

and

lMz(t) =
∑
b∈Bz

(−σb × q∗b × (pb − C∗
z ))− σTSO × q∗TSO × (pTSO − C∗

z ) (6)

For time step i, lWt is the local welfare, lMz(i) is the local market welfare and lSAz(i) are the local

congestion management costs. Bz is the set of accepted bids accepted in zone z. C∗
z is the market

clearing price in zone z. σTSO, q
∗
TSO and pTSO are respectively the direction (same as for Balancing

Service Provider bids), the accepted volume and the price of TSO demand in zone z.

2.1.3 Conservative TSO

The Conservative TSO aims only to minimize its own costs. TSO costs consist in balancing costs i.e. the

price paid on the market for TSO demand, local congestion management costs and filtering compensation

costs.

In this paper, filtering compensation takes place when a bid is advantaged by filtering and activated

by the balancing market at a loss5: the market price does not allow it to recover its costs. The TSO

should compensate the difference between the initial price and the market price. Figure 1 illustrates the

compensation mechanism for an upward bid. The bid in blue has been advantaged and its price has

been updated to pb + at(b) with at(b) < 0. The market clears at a price C∗
z lower than the advantaged

bid’s initial price pb. The TSO compensates the part of the bid that is not covered by the market

q∗b × (pb − C∗
z ). The same applies for an advantaged downward bid if its initial price is lower than the

market price. Compensation is counted in market welfare; it does not appear in other TSO strategies

5Other compensation schemes were possible. For example, bids that should have been accepted by the market and were
not because they were disadvantaged by filtering could also be compensated. The scheme chosen in this paper matches
current filtering practices.
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because it is a financial transaction and other strategies consider net Social Welfare, which does not

reflect internal financial transactions.

Figure 1: TSO compensation mechanism

The objective function of the Conservative TSO can be written as:

max
s0→a1→s1→...→sN

N∑
t=1

cWt = −h(st, at) (7)

with

h(st, at) = BCz(M(t, at)) + Compz(M(t, at), Qt, Pt) + lSAz(M(t, at), Lt,MC) (8)

At time step i, BCz(i) and Compz(i) are respectively the TSO balancing costs and compensation costs

in zone z. They can be written as

BCz(M(t, at)) = −σTSO × q∗TSO × C∗
z (9)

Compz(M(t, at), Qt, Pt) =
∑
b∈Bz

q∗b × δb (10)

δb is a variable that indicates the compensation price if the bid was advantaged at a loss:

δb = max(0, σb × (pb − C∗
z )) (11)

Although the TSO compensation formula 10 is the one used in the results analysis to compute real

compensation costs, in the objective function of the Conservative RL agent, a slightly different formula

was used, as described below:

Comp′z(M(t, at), Qt, Pt) =
∑
b∈Bz

q∗b × δ′b (12)

and

δ′b = max
(
0, σb × (−at(b))

)
(13)
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In this formulation, the whole price delta is compensated, not just the difference with the market price.

It encourages the Conservative TSO to reduce the price deltas that advantage bids.

2.2 Filtering methodology

2.2.1 Proposed filtering

In this paper, the filtering method used is the one presented in (Girod et al., 2024). The action of

the filtering method is to add a price delta a = (a0, . . . , ab) to bid prices Pt = (p0, . . . , pb) in order to

advantage/disadvantage bids that decrease/increase congestion. The price delta aims to represent the

congestion management costs linked to the activation of the bid. As each TSO can only apply filtering in

its own zone, if bid j is not in the zone where filtering is applied, aj = 0. The balancing market clearing

is then run with these new prices, which has an impact both on bid activation and market prices. The

security analysis is run with the modified market outcome.

2.2.2 Multi-agent modeling

In (Girod et al., 2024), only one TSO filtered in its zone. In this paper, several TSOs filter separately in

their own zone. Each TSO i applies a set of price deltas ai = (ai,0, . . . , ai,b) to bid prices Pt with ai,j = 0

if bid j is not in the zone of TSO i. Although TSOs determine the price deltas for their zone separately,

they are all applied to the same simulation environment: the same market clears with all sets of price

deltas.

2.2.3 Resolution with reinforcement learning

RL is used in order to determine the price deltas. RL is a section of non-supervised machine learning

where an agent performs an action, which has an impact on an environment, and the agent is rewarded

accordingly to this impact. Here, more specifically, multi-agent RL is used to simulate several TSOs

acting separately on the same environment.

Multi-agent RL has been used in power systems extensively with different objectives. A few examples

follow. (Daneshfar and Bevrani, 2010) apply multi-agent RL for load-frequency control. (Du et al., 2021)

approximate a Nash equilibrium in day-ahead electricity market bidding.(May and Huang, 2023) simulate

a peer-to-peer community of prosumers.(Harder et al., 2023) apply multi-agent RL to model electricity

markets with 145 revenue-maximizing participants.

In this framework, the n agents’ actions (a1, . . . , an) are applied to an environment, which returns n

rewards (r1, . . . , rn) linked to the actions of all agents on the environment. Figure 2 summarizes the RL

framework and information flows in a case with two agents.

An RL agent’s observation space is the set of values it can access, and its action space is the set of actions.

The observation space and action space are distinct for each RL agent. Here, an agent’s observation space

is made up of two sets of variables: flows on all lines for a predicted network (productions set to the

output of the day-ahead market, load and renewable forecasts updated with H-1 predictions - the same

predictions as in the balancing market and security analysis, distributed slack); maximum power of

upward and downward bids for each generator in the zone where the agent filters. Predictions of flows

on all lines are common to all agents; bid information is different for each one. The Grid2op framework

described in (Marot et al., 2021) is used for network computation and observations.
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Figure 2: Multi-agent Reinforcement Learning framework

An RL agent’s action space is a different price delta for each generator in his zone, both for an upward

bid and a downward bid. If the generator has not submitted a bid at that time, the bid’s maximum

power is set to zero. The action space is restricted by an upward and downward limit, set slightly higher

and lower than the TSO’s upward and downward demand price respectively. This limit enables the agent

to remove a bid from the market by setting a delta too high for the bid to be met by TSO demand.

Each RL agent receives its reward at the end of a week of training. Its objective is to learn to maximize

its reward. The reward depends on its strategy (Benevolent, Local or Conservative, described in section

2.1) and its zone: if the TSO is a Local TSO in zone x, it will receive the sum of Local Welfare in zone x

over the week. The reward also indirectly depends on the filtering actions of other TSOs, as they impact

both the same balancing market and security analysis. Therefore an agent will learn the filtering scheme

that maximizes its objective function given the other agents’ strategies.

The RL-algorithm used is Soft Actor-Critic, a state-of-the-art deep RL algorithm. It outperforms other

classic algorithms (Haarnoja et al., 2019) for multi-agent RL with continuous action and observation

spaces. It was also the closest algorithm to the one used in (Girod et al., 2024) that worked for multi-

agent. Using a similar algorithm should help recover comparable results. Soft Actor-Critic is particularly

adapted to the model, with its large and continuous action and observation spaces. Parameters such as

learning rate, neural network architecture and fragment length were tuned. The same parameters were

used in all variants to avoid advantaging one over the other. Variants were trained on 900 000 iterations

over one year of data at an hourly time step, at which point they had all converged. The converged

model was used to evaluate results (last saved checkpoint). In future works, other RL algorithms could

be tested and parameters further refined.

2.3 Evaluation framework

All variants are evaluated in the simulation environment presented in Figure 3. First, each TSO can

filter bids in its area, given a network forecast and according to its own filtering strategy. Then they

send the bids from their area and their own demand to the market, which clears considering the cross-

border capacities, and returns market welfare and price. After the market, the network is updated with

volumes sold. The security analysis runs considering the updated network, solves existing congestion and

computes congestion management costs.
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Figure 3: Evaluation framework

The balancing market and security analysis are the same as in (Girod et al., 2024). Balancing Service

Providers offer all their available power upward and downward at marginal cost considering their technical

constraints (gradient, minimum on/off time and minimum stable time for thermal generators). TSO

demand is the imbalance in their zone, formulated at all costs. The zonal market clearing maximizes

market welfare considering Available Transfer Capacity constraints. Market prices are the price of the

marginal bid, using modified - not initial - bid prices, and considering ATC constraints. This pricing

method was chosen as it is coherent with the market dispatch.

The security analysis simulates the actions of an operator at the balancing market outcome: it aims to

restore network security at minimal cost. It is modeled here using a security-constrained Optimal Power

Flow. The objective function and several constraints of the security-constrained Optimal Power Flow are

presented in (Girod et al., 2024).

3 Case study

3.1 Network

The model was applied to the RTS GMLC (Barrows et al., 2020), a modified IEEE-96 network with a

high share of renewables. The RTS GMLC includes one year of load and renewable production data, as

well as H-24 forecasts. The network is slightly simplified in this paper: storage is removed, minimum

power constraints for generators are not considered and only marginal cost is included. Load shedding

cost is 33 k/MWh, the value used by the French regulator (Commission de regulation de l’Energie, 2022).

Contingencies for N-1 states are a subset of 17 lines selected using a sensitivity analysis.

A limit in feasible volume of redispatch was included in the security analysis and evaluated in (Girod

et al., 2024) to represent operational constraints near real-time. This limit was previously set to 200MW

of feasible redispatch. The lower the limit is set, the more constrained the network. A sensitivity analysis

showed that in a constrained network, the RL agent became efficient in critical situations and neglected

the situations with lower congestion management costs. The main objective of (Girod et al., 2024) was

to assess the capacity of filtering to resolve insecure situations, and therefore needed a range of insecure

cases. In this paper, we focus on the impact of different TSO strategies on the market and the welfare
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of different zones and wanted to test the RL agent on more varied situations. We chose a less congested

network, and set the limit in feasible volume of redispatch to 300MW.

3.2 Data generation

A balancing market aims to resolve an imbalance. The imbalance is created here with a day-ahead

market simulation using the ATLAS model (Little et al., 2024). The market clearing, simulating DA and

ID jointly, is run with flow-based constraints. The flow-based computation is detailed in (Girod et al.,

2022). Renewable production and load forecasts are updated at different stages of the simulation and

create imbalances. In order for the simulated day-ahead market to fill both the roles of the day-ahead

and intraday markets, uncertainties are set to H-2 forecasts instead of the actual H-24 forecast for day-

ahead bids. Flow-based computation, usually run with H-48 forecasts, is run here with H-24 forecasts for

coherence.

Balancing bids are also computed in the ATLAS model (Cogen et al., 2024). Balancing bids are computed

with H-1 forecasts. Generators bid all their available capacity considering technical constraints for thermal

generators: gradient, minimum on/off time and minimum stable time constraints. Generators bid at

marginal cost. In particular, Renewables bid at 0.1e for upward bids and -0.1e for downward bids to

avoid unrealistic netting. TSO demand is the hourly zonal imbalance, computed considering exchanges

from the day-ahead market. TSOs bid at ”all costs” - in this case 300e /MWh, which is higher than

the most expensive generator’s marginal cost at 180e /MWh. The balancing market clears with ATC

constraints. The balancing ATC is derived from the day-ahead flow-based domain using the operational

method (Creos, Tennet, Amprion, RTE, Transnet BW, Elia, 50Hertz, APG, 2020) and is thereby based

on H-24 forecasts.

The RL models are trained and tested on two different data sets with one year of data each, at an hourly

time step6. In operational conditions, training would necessarily take place on a different data set than

the one that is observed in real time. The reference situation and balancing bids are created using the

method described above in both cases, but two changes are applied to the network for the training set in

order to create different but consistent data sets. First, the RTS GMLC forecasts were switched: the H-24

forecast was considered as real-time data and real-time data was considered as an H-24 forecast. H-1 and

H-2 forecasts were updated accordingly. This approach preserved coherent forecasts and imbalances in

the training set. Second, four thermal generators were removed in the training data set: they were very

active in the testing set, so removing them had a strong impact on dispatch and created a substantial

difference between the two data sets; they were too slow to take part in redispatch, so removing them

did not impact the TSO real-time action modeled by the security analysis.

3.3 Zone characteristics

The network includes three interconnected zones. They have a similar network topology but different

production and load. Table 2 presents some characteristics. Local congestion management costs and

market welfare are computed in the simulation environment described in section 2.3 in the Do Nothing

case. Zone 3 is the most impactful: it has the highest installed renewable capacity, highest congestion

management costs and highest local balancing market welfare. Zone 2 is the least impactful in all three

categories.

6The code and data sets are being reviewed and will be published in open access if the paper is accepted
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Table 2: Zone characteristics in balancing Do Nothing simulation

Zone 1 Zone 2 Zone 3

Installed renewable capacity
(GW)

1.5 1.0 4.0

Local congestion
management costs (Me )

3.9 2.0 27

Local balancing market
welfare (Me )

32 14 51

In order to have varied cases, zone 2 and 3 are chosen as the zones where filtering is applied. Zone 1 is

chosen to not be part of the filtering process (no filtering is applied to this zone) to limit the number of

possible combinations and make it easier to understand what is happening.

3.4 Studied strategy combinations

In all the studied variants, one TSO does not cooperate (Do Nothing objective) and the two others filter

separately in their own zone. All three strategies - Benevolent, Local and Conservative - are applied once

in both zones and once in combination with a Benevolent TSO, to understand the effects of common and

diverging strategies. Table 3 summarizes the studied variants. Each combination is only tested once: the

zone 1 TSO does not filter and when strategies diverge, the TSO in zone 3 is the Benevolent one. In

future works, the roles between TSOs could be exchanged to test all possible combinations.

Table 3: Studied TSO strategy combinations

Variant Zone 2 Zone 3 Zone 1

Do Nothing Do Nothing Do Nothing Do Nothing

Two Benevolent TSOs Benevolent Benevolent Do Nothing

Local + Benevolent TSOs Local Benevolent Do Nothing

Two Local TSOs Local Local Do Nothing

Conservative + Benevolent TSOs Conservative Benevolent Do Nothing

Two Conservative TSOs Conservative Conservative Do Nothing

4 Results and Discussion

All variants were evaluated over a year on the test data, which was never seen during the RL training. In

this section, first, results for all considered variants are provided, aggregated over the year. Observations

on filtering efficiency, impacts on TSO costs, coordination and result coherence are made. The impact of

coordination is discussed. Second, time series of total costs and TSO costs in zones 2 and 3 are presented.

Third, TSO costs are broken down to outline incentives TSOs are given with the current filtering design.

4.1 General results

Figure 4 presents total costs, local costs and TSO costs for every variant in Table 3. Total costs and

local costs are respectively the opposite of net Social Welfare and local welfare. Local costs are negative
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because they take into account TSO demand, which increases welfare and counts as negative costs. Several

observations can be made when considering Figure 4, as detailed in the following subsections.
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Figure 4: Total costs, local costs and TSO costs by zone for each variant
The variants marked with a * have converged in a local maximum and are discussed below.

4.1.1 Global filtering efficiency

When Two Benevolent TSOs filter, total costs are highly reduced compared to Do Nothing. The Two

Benevolent TSOs variant is the most efficient in terms of total cost minimization. More generally, as

long as the zone 3 TSO is Benevolent (Two Benevolent, Local + Benevolent, Conservative + Benevolent

variants), costs are significantly reduced with filtering. As seen in section 3.3, zone 3 has the highest

congestion management costs and market welfare, so it makes sense that filtering in zone 3 has a strong

impact.

4.1.2 Impact of strategies on TSO costs

Filtering can be expensive for TSOs. In the Two Benevolent TSOs variant, although total costs are

reduced, TSO costs for zone 2 are multiplied by 7. If a TSO only considers its own costs, it is not

necessarily in its interest to filter, even if filtering reduces total costs: over all studied variants, TSO costs

in zone 2 are either stable or increase with filtering; in zone 3 they either slightly decrease or significantly

increase. TSO costs will be further analyzed in section 4.3. The fact that filtering is not necessarily

beneficial for individual TSOs is all the more true given that TSO costs in zone 1, where no filtering

is applied, are either stable or decrease when the other zones filter. This is probably linked to the case

study, but it shows that the free-rider strategy can be profitable.

4.1.3 Impact of coordination

TSO costs depend on other TSOs’ strategies: because RL agents are trained together, they learn each

other’s strategies and adapt their actions accordingly. This probably represents what would happen under

actual conditions: TSOs would adapt to each other’s actions even if they did not communicate in real

time.
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If this coordination is not properly regulated, its impact can be negative. For example, when the zone 2

TSO is Conservative and the zone 3 TSO is Benevolent, the Conservative TSO transfers its costs to the

Benevolent TSO: zone 3 TSO costs increase to 44Me compared to 28Me in the Two Benevolent case,

and zone 2 TSO costs decrease to 2Me compared to 14Me in the Two Benevolent case.

On the other hand, when both TSOs have a Benevolent strategy, coordination gives them an extra degree

of freedom to maximize net Social Welfare. In Appendix B, filtering actions of the Two Benevolent and

Local + Benevolent variants are presented on one time step, identified by the arrow in Figure 5. In this

example, when both TSOs had a Benevolent strategy, the efficient solution they applied to minimize total

costs would not have been possible without coordination. In the Benevolent + Local case, coordination

gave the Local TSO an opportunity to profit from the Benevolent TSO.

The importance of inter-TSO coordination in congestion management has already been identified by

(Kunz and Zerrahn, 2015; Glachant and Pignon, 2005; Glachant et al., 2017; Bertsch et al., 2016). (Kunz

and Zerrahn, 2015) run a General Nash Equilibrium model between four TSOs and show that coordination

in redispatch leads to lower congestion management costs (although volumes are similar, coordination

leads to the use of cheaper redispatch resources), gains in supply security with more remaining margins

on lines and fewer TSO interventions, and a decreased need for network expansion. (Bertsch et al., 2016)

analyze different congestion management methods and find that one of the two main sources of inefficien-

cies compared to nodal pricing is that TSO actions are restricted to zones. (Glachant et al., 2017) identify

the lack of coordination in redispatch as one of the roadblocks to the integration and decarbonisation of

the European electricity sector. One of the proposed solutions is to share costs and benefits of redispatch

among European TSOs with a mechanism that should be fair and provide sound incentives to TSOs. This

approach could also be implemented for filtering with an ex-post distribution of compensation and secu-

rity costs. (Glachant and Pignon, 2005) put forward several solutions to enhance coordination between

TSOs in congestion management. They recommend exchanging information, increasing transparency of

decisions, improving procedures so that TSO operations and markets are seamlessly connected, merging

some TSOs and creating a multi-country regulating body (the article dates from 2005, before the creation

of ACER in 2009).

Among these measures, information exchange and improved decision transparency could be applied to

filtering. For instance, this could involve sharing filtering results or algorithms, thereby also making the

TSO’s objective function publicly accessible. Furthermore, TSOs from different zones could train their

filtering agent on the same dataset to create coordination. It would be interesting to better quantify the

level of coordination achieved in this paper. Future studies could look at a case with no coordination -

agents trained separately - and a case with perfect coordination - one agent that filters for all zones.

4.1.4 Result coherence

The Benevolent and Conservative TSOs are coherent with their objective functions. Total costs are the

lowest when both TSOs are Benevolent. When the zone 2 TSO is Conservative and zone 3 TSO is

Benevolent, zone 2 TSO costs decrease compared to the Benevolent variant, and total costs are lower

than when the zone 3 TSO is also Conservative. When both TSOs are Conservative, total costs increase

as nobody aims to minimize them, and TSOs find a balance where both their individual costs are low.

It seems that in the Conservative variant, the TSO strategies are close to Do Nothing. This point will

be further analyzed in section 4.3.

Although the results for the Two Local TSOs are coherent, it seems that the models have converged in

a local minimum. When only the zone 2 TSO is Local, its local costs are low, but they are higher than

in the Conservative + Benevolent case so the model has not reached the optimum. In the same way,
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when both TSOs are Local, their local costs are low, but slightly higher than the Do Nothing case. This

is likely due to the TSO demand price, which is counted in local costs and not in total costs and has

a major impact on results: for Do Nothing, the TSO demand welfare amounts to 66Me over the year,

which is around the double total costs.

The arbitrary value of TSO demand price is driving results for local costs, which has two implications.

First, it is likely that the difference in local costs between variants is not significant. Second, it was

probably difficult for Local RL agents to train properly: the effect of their actions on their reward were

buried by TSO demand welfare and they must have focused on filling TSO demand in the market as

it had the most value, even though it was not the desired objective. In order to solve the issue, TSO

balancing costs instead of TSO demand welfare could be counted in local costs as they do not take into

account TSO demand price.

4.2 Hourly costs
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Figure 5: Hourly costs for Do Nothing, Two Benevolent TSOs and Conservative + Benevolent TSOs
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Figure 5 presents hourly costs for three variants: Do Nothing, Conservative + Benevolent TSOs and Two

Benevolent TSOs. The top graph shows total costs. The hours with peaks in costs are the hours where

load shedding occurs. The Two Benevolent TSOs greatly reduce both the number of hours with load

shedding and its cost. The Conservative + Benevolent TSOs do help reduce load shedding, but not as

often or as efficiently. Appendix C presents total costs broken down by balancing generation costs and

congestion management costs. It shows that congestion management costs always decrease with filtering,

even if total costs increase.

The middle graph presents TSO costs in zone 3 for the corresponding hours. Over the year, zone 3

TSO costs are 33Me with Do Nothing, 28Me with Benevolent TSOs and 44Me with Conservative +

Benevolent TSOs. The TSO costs in hours with load shedding are similar to total costs, which means

that in those three variants, the TSO in zone 3 bears most of the congestion management costs during

high-stake hours.

TSO costs in zone 3 decrease with filtering in hours with load shedding, but increase in low-stake hours

(hours where Do Nothing total costs are smaller than 10ke ). Zone 3 TSO costs in low-stake hours

amount to 23% of all zone 3 TSO costs in the Do Nothing case, 91% in the Two Benevolent case and 97%

in the Conservative + Benevolent case. As discussed in (Girod et al., 2024), filtering could be applied

only when the risk of load shedding is higher than a threshold, i.e. in high-stake situations, and most of

filtering’s value would be retained. Zone 3 TSO costs would be further reduced in the Two Benevolent

TSOs variant as low-stake hour costs would decrease to the Do Nothing level. The zone 3 TSO would

have a higher incentive to filter Benevolently with this high-stake/low-stake separation. Further refining

the RL algorithm used and its parameters in future work could also help reduce unnecessary filtering.

The bottom graph presents TSO costs in zone 2. In zone 2, TSO costs are 2Me with Do Nothing,

14Me with Benevolent TSOs and 2Me with Conservative + Benevolent TSOs. In the Do Nothing and

Conservative + Benevolent cases, TSO costs seem very close and regularly distributed across hours. In

the Two Benevolent TSOs case, the cost increase is spread out and is not particularly linked to hours

with load shedding. Even if the risk threshold was added, the zone 2 TSO costs would increase with the

Benevolent strategy. In any case, the zone 2 TSO would not filter Benevolently if it only considers its

costs.

4.3 TSO incentives
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Figure 6: Breakdown of TSO costs for every zone in Do Nothing, Two Benevolent, Conservative +
Benevolent and Two Conservative variants
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Figure 6 shows a breakdown of TSO costs by local congestion management costs, balancing costs and

compensation costs in each zone for four different variants. In the Two Benevolent TSOs variant, TSOs

pay large compensation costs to reduce congestion management costs. It may seem counterintuitive that

TSO costs increase compared to the Do Nothing variant, even though total costs decrease, as seen in

Figure 4. This is because compensation costs, that are a financial transaction between the TSO and

producers, are not included in the total costs computation. What does affect total costs, however, are

changes in the generation dispatch to take into account network constraints. These changes are due either

to Proposed filtering that modifies the merit order, or to congestion management. A solution where a

preventive change in the merit order affects the final dispatch less than ex-post congestion management

is therefore more efficient, whatever the TSO compensation costs. The TSO compensation costs could

be redistributed among market agents later.

In the Conservative + Benevolent variant, the Conservative zone 2 TSO transfers nearly all its compen-

sation and congestion management costs to the Benevolent zone 3 TSO. In the Two Conservative TSOs

variant, both TSOs have nearly eliminated their compensation costs and pay congestion management

costs instead. TSO costs, as well as total costs in Figure 4 are very close to the Do Nothing variant.

Thus, it seems that if both TSOs try to minimize their costs, it is overall more advantageous for them to

pay congestion management costs than compensate, even if it is not efficient for the global system.

Given the impact on TSO costs, it seems unlikely that, without regulation, all TSOs will choose the

Benevolent strategy. If even only one TSO chooses another strategy, the other TSOs will likely adapt: it

is not sustainable for TSOs to stay Benevolent if others are not, as others would transfer their costs to

the Benevolent TSOs. As mentioned in section 4, not filtering can also be beneficial for the TSO: in the

studied variants, TSO costs either decreased or remained stable in the zone with no filtering.

Furthermore, the TSO has fewer incentives to apply Proposed filtering than other congestion methods that

are not necessarily more efficient in terms of Social Welfare. For example, the Baseline filtering method,

described in (Girod et al., 2024), removes bids from the market instead of advantaging/disadvantaging

them. Hence the TSO does not have any compensation costs. It is likely that some TSOs would have

lower costs with Baseline filtering than with Proposed filtering, although (Girod et al., 2024) showed that

Proposed filtering was significantly more efficient in terms of net Social Welfare. Similarly, with cross-

border capacity, the TSO does not incur any costs and receives part of the congestion rent. Although

filtering is not designed to replace cross-border capacity, in some cases applying filtering instead of

reducing the cross-border capacity may be more efficient in terms of net Social Welfare but more costly

for the TSO.

5 Conclusion and Policy Implications

In this paper, we studied the interaction between Transmission System Operators (TSOs) in the context

of filtering for the upcoming common European balancing markets. Filtering enables TSOs to remove bids

emitted in their zone if they are expected to create congestion. It is performed by each TSO separately

but bids are shared in a common market, which means that one TSO’s filtering affects the welfare of

other zones. We simulated the effect of several TSOs filtering on a market clearing to determine market

welfare, and a subsequent network security analysis, that computes congestion management costs. Social

Welfare is considered here as the difference between market welfare and congestion management costs.

Three different TSO strategies for filtering were studied: Benevolent, Local and Conservative, which

respectively aim to maximize net Social Welfare, maximize local welfare and minimize TSO costs.
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Several observations were drawn from the simulation. First, the most efficient variant in terms of net

Social Welfare was when both TSOs were Benevolent. Second, two TSOs filtering separately but in a

coordinated manner can help increase net Social Welfare. When both TSOs are Benevolent, coordination

gives them an extra lever; otherwise it can give a non-Benevolent TSO the opportunity to take advantage

of a Benevolent TSO. Third, Benevolent filtering can be expensive for individual TSOs even if it reduces

system costs over all zones. In particular, if one TSO is Benevolent and the other is not, the latter

TSO may take advantage of the situation and transfer local or TSO costs to the Benevolent TSO. If this

happened in real conditions, the Benevolent TSO would probably adapt and turn to another strategy. It

is therefore unlikely that all TSOs would adopt a Benevolent strategy without an adaptation of regulation.

These results lead to two policy recommendations. First, coordination should be fostered by appropriate

regulation. In the design of the common European balancing markets, it has been decided that filtering

would be applied by each TSO independently, without knowledge of bids emitted in other zones. No

regulation currently encourages inter-TSO coordination : for example, there is no obligation to publish

filtering methods used. It has been underlined previously that inter-TSO coordination is essential for

efficient congestion management and the findings of this study further demonstrate its importance in

the context of filtering. Several measures could help enhance coordination: sharing filtering results or

algorithms among zones, or training filtering algorithms on the same dataset.

Second, regulation should be adapted to ensure Social Welfare-maximizing filtering. Results showed that

the current market design does not send the correct signals. Unsuitable signals can be reinforced by

national regulation. In France for example, the TSO is incentivized to reduce congestion management

costs (Commission de regulation de l’Energie, 2021) - it is heavily penalized if it exceeds the reference

trajectory. This may encourage the TSO to put congestion management cost reduction ahead of market

welfare, whereas one of the keys to efficient filtering is finding the balance between both. If this TSO

wished to implement Social Welfare-maximizing filtering, it would first need to request a change in tariff -

which occurs every 4/5 years - before being able to implement it. Furthermore, the French TSO is state-

owned; the incentive for a private TSO to reduce congestion management costs may be even stronger.

As a solution, the national regulator can monitor the TSO’s filtering decisions to check that it does not

adopt a strategy adverse to market players and/or other TSOs. An alternative would be the development

of an incentive regulation on congestion, taking into account a criterion of overall Social Welfare rather

than congestion costs.

Funding sources — The research presented in this paper was supported by the French Electricity

Transmission System Operator, RTE, and the French National Association for Technological Research

under ANRT contract n2020/0857.

17



References

Barrows, C., Preston, E., Staid, A., Stephen, G., Watson, J.-P., Bloom, A., Ehlen, A., Ikaheimo, J.,

Jorgenson, J., Krishnamurthy, D., Lau, J., McBennett, B., and O’Connell, M. (2020). The IEEE

reliability test system: A proposed 2019 update. IEEE Transactions on Power Systems, 35(1):119–

127.

Bertsch, J., Hagspiel, S., and Just, L. (2016). Congestion management in power systems: Long-term

modeling framework and large-scale application. Journal of Regulatory Economics, 50(3):290–327.

Cogen, F., Little, E., Dussartre, V., and Bustarret, Q. (2024). ATLAS: A model of short-term european

electricity market processes under uncertainty – balancing modules.

Commission de regulation de l’Energie (2021). Deliberation of the french energy regulatory commission

of 21 january 2021 deciding on the tariffs for the use of public transmission electricity grids (turpe 6

htb).

Commission de regulation de l’Energie (2022). Deliberation n2022-152.

Creos, Tennet, Amprion, RTE, Transnet BW, Elia, 50Hertz, APG (2020). CWE TSOs methodology for

capacity calculation for the intraday timeframe.

Daneshfar, F. and Bevrani, H. (2010). Load–frequency control: a ga-based multi-agent reinforcement

learning. IET generation, transmission & distribution, 4(1):13–26.

Doorman, G., Haberg, M., Overjordet, A. S., Warland, L., Maeland, H., Tveita, ., and Gronaas, H.

(2022). Handling intra-zonal constraints in the upcoming european balancing markets. CIGRE.

Du, Y., Li, F., Zandi, H., and Xue, Y. (2021). Approximating nash equilibrium in day-ahead electricity

market bidding with multi-agent deep reinforcement learning. Journal of modern power systems and

clean energy, 9(3):534–544.

ENTSO-E (2020). MARI accession roadmap.

ENTSO-E (2023). Terre.

Girod, M., Donnot, B., Dussartre, V., Terrier, V., Bourmaud, J.-Y., and Perez, Y. (2024). Bid filtering

for congestion management in european balancing markets–a reinforcement learning approach. Applied

Energy, 361:122892.

Girod, M., Karangelos, E., Little, E., Terrier, V., Bourmaud, J.-Y., Dussartre, V., Jouini, O., and Perez,

Y. (2022). Improving cross-border capacity for near real-time balancing. In 2022 18th International

Conference on the European Energy Market (EEM), pages 1–6.

Glachant, J.-M. and Pignon, V. (2005). Nordic congestion’s arrangement as a model for Europe? Physical

constraints vs. economic incentives. Utilities policy, 13(2):153–162.

Glachant, J.-M., Rossetto, N., and Vasconcelos, J. (2017). Moving the electricity transmission system

towards a decarbonised and integrated Europe: Missing pillars and roadblocks. Policy Briefs, Florence

School of Regulation, Energy, Climate.

Guntermann, C., Wahl Gunderson, N., Lindeberg, E., and Hberg, M. (2018). Detecting unavailable

balancing energy bids due to risk of internal congestions. In 2018 IEEE International Conference on

Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems

Europe (EEEIC / I CPS Europe), pages 1–4.

18



Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A.,

Abbeel, P., and Levine, S. (2019). Soft actor-critic algorithms and applications.

Harder, N., Qussous, R., and Weidlich, A. (2023). Fit for purpose: Modeling wholesale electricity markets

realistically with multi-agent deep reinforcement learning. Energy and AI, 14:100295.

International Energy Agency (2024). World energy outlook. Technical report, IEA.

Kunz, F. and Zerrahn, A. (2015). Benefits of coordinating congestion management in electricity trans-

mission networks: Theory and application to germany. Utilities Policy, 37:34–45.

Little, E., Cogen, F., Bustarret, Q., Dussartre, V., Lasri, M., Kasmi, G., Girod, M., Bienvenu, F., Fortin,

M., and Bourmaud, J.-Y. (2024). ATLAS: A model of short-term european electricity market processes

under uncertainty.

Marot, A., Donnot, B., Dulac-Arnold, G., Kelly, A., O’Sullivan, A., Viebahn, J., Awad, M., Guyon, I.,

Panciatici, P., and Romero, C. (2021). Learning to run a power network challenge: a retrospective

analysis. In Proceedings of the NeurIPS 2020 Competition and Demonstration Track, volume 133 of

Proceedings of Machine Learning Research, pages 112–132. PMLR.

May, R. and Huang, P. (2023). A multi-agent reinforcement learning approach for investigating and

optimising peer-to-peer prosumer energy markets. Applied Energy, 334:120705.

Papavasiliou, A., Bjorndal, M., Doorman, G., and Stevens, N. (2020). Hierarchical balancing in zonal

markets. In 2020 17th International Conference on the European Energy Market (EEM), pages 1–6.

IEEE.

19



Appendices

A Acronyms and nomenclature

Table A.1: Acronyms and nomenclature

Acronyms

ATC Available Transfer Capacity

mFRR manual Frequency Restoration Reserve

RL Reinforcement learning

RR Replacement Reserve

TSO Transmission System Operators

Nomenclature

si Network state at timestep i

nSWi Net Social Welfare at timestep i

ai = (a0, . . . , ab) RL Filtering action at timestep i

Qi = (q0, . . . , qb) Bid volumes offered at timestep i

Pi = (p0, . . . , pb) Bid prices offered at timestep i

Li = (l0, . . . , ln) Load at n nodes of the network at timestep i

ATCi Cross-border capacities at timestep i

MC = (mc0, . . . ,mcg) Marginal costs for all generators

M(t) Market outcome

SA(t) Security analysis outcome

B Set of bids emitted in all zones

Bz Set of bids emitted in zone z

q∗b Accepted volume of bid b

σb Direction of bid b

C∗
z Market clearing price in zone z

q∗TSO Accepted volume of TSO demand

σTSO Direction of TSO demand

pTSO Price of TSO demand

ri = (r1,t, . . . , rn,t) RL reward at timestep i

oi = (o1,t, . . . , on,t) RL observation at timestep i

B Analysis of filtering actions on a time step

Figure 4 showed that Two Benevolent and Local + Benevolent variants perform best in terms of net

Social Welfare, but lead to different situations in terms of local Welfare and TSO costs. This section

focuses on the action of the corresponding RL agents on one hour. The chosen time step is January 13th

at 7PM, marked on Figure 5 by an arrow, as Do Nothing, Two Benevolent TSOs and Local + Benevolent

TSOs lead to contrasted results. Table B.1 summarizes the results for each variant.
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Table B.1: Outcome of Do Nothing, Benevolent TSOs and Local + Benevolent TSOs on January 13th at
7PM

Do Nothing Benevolent
Local +

Benevolent

Total cost (e ) 28k 1.4k 12k

Local cost zone 2 (e ) 11k 4.5k -16k

Local cost zone 3 (e ) 8k 0.3k 78k

Market price (e ) 26 28 248

In that hour, Two Benevolent TSOs lead to the lowest total costs and zone 2 bears most of the costs.

Local + Benevolent TSOs lead to higher total costs, but still lower than Do Nothing. Zone 2, where the

TSO is Local, has negative local costs in this case and costs in zone 3 blow up. In the Local+ Benevolent

variant, the market price skyrockets (the market price is equal across all zones in all variants).

Figure B.1 presents the effects of each variant on the balancing market at that hour. The dashed line

is the ‘Buy’ curve - or downward bids -, the other is the ‘Sell’ curve - or upward bids. The bids from

all zones are represented; the cross-border capacity is not limiting at that hour so all exchanges were

possible. Bids that can be filtered by the zone 2 TSO (all bids emitted in the zone except TSO demand)

are colored in magenta and those that can be filtered by the zone 3 TSO are colored in yellow.

(a) Do Nothing

(b) Benevolent TSOs (c) Local+Benevolent TSOs

Figure B.1: Merit order curves for Do Nothing, Benevolent and Local + Benevolent strategies on January
13th at 7PM

In the Do Nothing case, the downward bid marked as 1 on Figure B.1, which is emitted by a wind power
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plant, is not accepted by the market. In the security analysis, this power plant is downward redispatched

and expensive combustion turbine thermal generators are activated in all three zones to compensate.

In the Two Benevolent TSOs case, the downward bid marked as 1 is disadvantaged and the downward

bid marked as 2 is advantaged and now accepted by the market. The security analysis leads to the same

volume of downward redispatch on bid 1 power plant. This time however, the corresponding upward

redispatch is performed by the bid 2 power plant, which is a gas combined cycle plant and is much

cheaper than the combustion turbine plants. Advantaging bid 2 in the balancing market made it possible

for the bid to be upward redispatched in the security analysis.

In the Local + Benevolent case, the zone 3 TSO advantages bid 1 more than zone 2 advantages bid 2.

Bid 1 is accepted by the market at a volume higher than it was previously redispatched. The network is

secure and no redispatch occurs in the security analysis.

Although the Local + Benevolent action may seem like the most straightforward solution, it actually

leads to higher total costs than the Two Benevolent TSOs solution. Because the volume offered in bid

1 is so large, and in order to advantage it, the TSO has set its price higher than all upward bids, the

market leads to a high volume being accepted. Advantaged bids create negative market welfare, as they

disrupt the merit order. It is more beneficial to accept the smaller volume of bid 2 and redispatch than

accept a large volume of bid 1 outside of the merit order.

Furthermore, in the Local + Benevolent variant, the zone 2 TSO transfers all the local costs to zone

3. Not only does the zone 2 TSO incur zero congestion management costs, it increases its local market

welfare. It sets the price of an upward bid just below the price of bid 1: the upward bid sets the market

price at 248e . Only upward bids are accepted for zone 2 and the high market price is favourable for

them. TSO demand in zone 2 aims to decrease production i.e. it is a ”Buy” bid, whereas in the other

two zones they are ”Sell” bids. TSO demand welfare is very high in zone 2 with the high market price,

and low in the other zones.

Because the RL agents in zone 2 and zone 3 are trained together, there is a high level of coordination

between TSOs: they learn the other’s strategy and adapt accordingly. In the Benevolent case, this coor-

dination gives an extra lever to meet the objective: the zone 2 and 3 TSO strategies are complementary

and help reduce total costs. In the Local + Benevolent case, this coordination helps the Local zone 2

TSO profit from the Benevolent zone 3 TSO. If the Benevolent TSO does not advantage bid 1, the Local

TSO will not either advantage bid 2, which would increase zone 2 local costs (Benevolent variant). The

resulting situation would lead to higher total costs (Do Nothing variant). Not only does zone 2 TSO not

push for bid 2 to be accepted, but it sets the price of its upward bids in a way that leads to very low

costs in zone 2 and very high costs in zone 3.

C Total costs breakdown

Total costs are defined as the sum of balancing generation costs (the opposite of market welfare) and

congestion management costs. Figure C.1 presents total costs for each variant, broken down by balancing

generation costs and congestion management costs. Congestion management costs systematically decrease

with filtering. Balancing generation costs increase with filtering, as Proposed filtering leads to deviating

from the merit order. Compensation is counted in Balancing generation costs.
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Figure C.1: Total costs broken down for each variant
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