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Abstract

In electricity systems, investment in generation capacity is subject to risk. The distribution of

uncertain parameters on which investment decisions depend might not be fully observed in his-

torical values. In Europe, this was recently illustrated by the crisis of exceptionally high power

prices during the 2021-2023 period, which was subsequently followed by a regime of extremely

low and even negative prices. In that vein, ambiguity aversion reflects a lack of confidence in

the distribution of uncertainty, while risk aversion is concerned with realizations of uncertainty.

We study a competitive market with investors who are averse to ambiguity. Such a market is

represented as an equilibrium model, where each agent solves a Wasserstein distributionally ro-

bust optimization problem regarding its investment decisions. Investments could be hedged by

contracts. We derive a convex reformulation of the problem, demonstrate the existence of equi-

libria, and prove a version of the welfare theorem in this ambiguous context. Via simulations,

we find that, as with risk aversion, ambiguity aversion results in capacity-investment deferrals.

We show however that, unlike standard results obtained with risk-aversion models, ambiguity

cannot be hedged through financial contracts when their revenues are indexed on spot prices.

Finally, we highlight that state-backed support schemes such as Contracts for Difference are

welfare-improving and capacity-preserving under ambiguity.
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1 Introduction

1.1 Context: risk and uncertainty in power markets

Supported by regulatory schemes such as the Clean Energy Package and RePowerEU in the

European Union and the Inflation Reduction Act in the United States, decarbonization and elec-

trification policies will be closely intertwined in the coming decades. The power sector must

undertake major investments in new low-carbon generation capacities (IEA [2023]). In this con-

text, in liberalized power sectors, producers are expected to invest based on price signals from

the energy market based on the crucial hypothesis that spot prices, i.e., short-term energy-only

prices, carry valid long-term information. This assumption, which we owe to the seminal work

of Marcel Boiteux (Boiteux [1960]), implies that long- and short-term marginal costs are equal

in efficient markets provided that the production mix is adapted to demand. As highlighted

notably in Joskow [2006], however, wholesale power markets are deemed imperfect, failing to

bridge short- and long-term incentives owing to various market failures, among which are the

exercise of market power and the well-known problem of ’missing money’ (Joskow [2008]).

Risk and market agents’ reactions to uncertainty constitute another fundamental market

failure. In particular, the absence of sufficient risk-trading opportunities in the sole energy spot

market has a detrimental effect on welfare when agents are risk-averse. This failure, referred

to as market incompleteness or ’missing markets’, has been highlighted in many articles in en-

ergy economics and operations research such as Finon [2008], Ehrenmann and Smeers [2011],

Downward et al. [2012], Ralph and Smeers [2015], Newbery [2016], Philpott et al. [2016], and

de Maere d Aertrycke et al. [2017], to cite but a few. This stream of research emphasizes the

detrimental effects of market incompleteness on welfare and investments, advocating for the

crucial role of contracts and other risk-sharing instruments in restoring welfare. This holds,

of course, if the spot market is perfectly competitive, as some authors have demonstrated that

contracts might fail to deliver on their promises in the presence of market power (Abada and

Ehrenmann [2023]). From a modeling perspective, to the best of our knowledge the state-of-the-

art approach to representing market incompleteness when investors are averse to risk utilizes

multi-stage equilibrium models where risk aversion is captured via convex risk measures. Such

measures provide, on the one hand, appreciable convexity properties, making it possible on

the other hand to derive complementarity formulations and ease economic interpretation of the

results via so-called risk-adjusted probabilities. These models have become standard when an-

alyzing investment decisions in a risk-averse environment; recent articles include de Maere d

Aertrycke and Smeers [2013], Egging and Holz [2016], Downward et al. [2016], Abada et al.

[2017a], Ferris and Philpott [2022], Mays and Jenkins [2022], and Dimanchev et al. [2024].

This stream of research, and its global focus on distortions of investment incentives in the
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electricity sector by the perception of uncertainty, gained visibility in a series of recently pub-

lished white papers documenting the recognition by regulators and policymakers of the serious

issue of market incompleteness.1 The issue has also gained practical reach as spot prices have,

consecutively, starting in 2021, displayed an all-time high regime resulting from the Russo-

Ukrainian war and gas disruptions, followed in 2024 by fast-paced growth in the number of

hours with negative prices, as reported in Figure 1. In the span of a mere four years, European

power systems have undergone two regimes at opposite price extremes. Figure 1 also indicates

that these regimes deviate substantially from the standard distribution of power prices observed

until 2020. Faced with such dramatic shifts in market data, could risk-averse investors still rely

on historical data to value future revenues?
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Figure 1: Day-ahead (DA) price-duration curves for France, in a selection of years between 2015
and 2024. Source: ENTSO-E, calculations by the authors.

1.2 The research questions

This question brings us back to the ontological difference between risk and uncertainty. In the

abovementioned literature on risk, it is assumed that random variables (prices, demand, plants’

availability, etc.) can be estimated from past data. In other words, while certain data may be

unknown, historical observations offer sufficient information to infer their probability distribu-

tions ex ante. This approach may fall short, however, when past observations can no longer be

relied upon, as argued above in the case of spot prices. Therefore, investors may no longer be

1Published by the Council of European Energy Regulators and the European Agency for the Co-
operation of Energy Regulators, these papers discuss the issue of missing markets in Europe. See
https://www.ceer.eu/wp-content/uploads/2024/04/C21-FP-49-03_Paper-on-LT-investment-signals.pdf
and https://www.acer.europa.eu/sites/default/files/documents/Publications/Final_Assessment_EU_
Wholesale_Electricity_Market_Design.pdf.
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risk-averse in the traditional sense that they know the distribution of the random data they will

face once an investment is made, but they may want their decisions to prove robust against an

observed but not absolutely trustworthy distribution of the uncertain data instead. This novel

feature of power markets, which we feel is adapted to the present situation, is referred to as

investment under ambiguity, in contrast with standard models of investment under risk. Simi-

larly, agents seeking optimal decisions in the context of an unknown distribution of data will be

referred to as ambiguity-averse. Our research questions can be summarized as follows. i) How

can we model a power economy where investment decisions have to be taken in an uncertain

environment in which the distribution of observed data cannot be entirely relied upon? ii) What

is the impact of aversion to ambiguity on welfare and installed capacity? iii) How does this im-

pact compare with the effects of risk aversion?

To answer these questions, we turn to the framework of distributionally robust optimiza-

tion (DRO hereafter). We refer the reader to Rahimian and Mehrotra [2019] for a review and

simply cite here some recent applications of this field: Gao et al. [2018], Bertsimas et al. [2019],

and Van Parys et al. [2021]. In a nutshell, distributionally robust optimization strives to formu-

late the worst-case expectation of random profits when the probability measure is drawn from

a so-called ambiguity set. Such a set encompasses all distribution functions of some random

parameters which are relatively close to the distribution drawn from historical observations of

data. This framework has garnered considerable attention recently with advances in theoreti-

cal research seeking convex reformulations and tractable approximations of the DRO problem:

examples include Goh and Sim [2010] and Wiesemann et al. [2014] to cite but a few. In close

relation to our research, the seminal work of Mohajerin Esfahani and Kuhn [2018] finds a con-

vex reformulation of the general problem under moderate assumptions that apply well in the

context of power systems.

This article treats the case where the ambiguity set is defined via the Wasserstein metric.

Recently, some researchers leveraged the DRO framework in the context of power markets: for

instance, Pourahmadi and Kazempour [2021] model a moment-based distributionally robust

capacity-expansion plan, Arrigo et al. [2022] focus on the optimal dispatch problem for reserve

energy from the point of view of an ambiguity-aware benevolent planner, and Esteban-Pérez

and Morales [2023] study the optimal power flow under ambiguity using a distributionally ro-

bust chance-constrained model. To the best of our knowledge, all studies tackling ambiguity in

power systems in a distributionally robust framework consider a single optimizing agent (e.g.,

an investor in Pourahmadi and Kazempour [2021], a Transmission System Operator in Arrigo

et al. [2022] and Esteban-Pérez and Morales [2023]). Our research follows suit and leverages

some convex reformulations of Mohajerin Esfahani and Kuhn [2018], but diverges from (and,

thereby, contributes to) the literature by considering a power economy of producers/investors
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and consumers interacting in the spot market and eventually signing contracts in an effort to

hedge their revenues. This necessitates elaboration of stochastic equilibrium models of ambiguity-

averse agents (we refer to Sun and Xu [2016] for some basic formulations and convergence results

derived from the problem). After all, in liberalized power markets, spot-price realizations are,

one the one hand, a consequence of market equilibrium between producers’ decisions and de-

mand levels, and, on the other hand, this market equilibrium is affected by the invested capacity

via the merit-order effect. Furthermore, market agents may not face the same levels of risk or

ambiguity aversion, which explains the need to extend the literature to study the economic

equilibria of the power system under ambiguity.

In fact, DRO is not the only viable approach to modeling aversion to ambiguity, as economic

theory offers interesting alternatives such as the maxmin expected utility framework (Gilboa

and Schmeidler [1989]), the smooth ambiguity model (Klibanoff et al. [2005]), and the α-maxmin

expected utility model (Klibanoff et al. [2022]). Compared with these approaches, the DRO

framework yields several advantages: First, it does not require utility functions which might be

difficult to elicit. Second, it makes it possible to incorporate financial risk-hedging instruments

such as contracts and options in a straightforward manner. Finally, it provides valuable con-

vexity properties that facilitate its integration into decision-making processes and optimization

problems, allowing for the derivation of equilibrium formulations. All these reasons explain

our choice to adopt the DRO framework to model ambiguity aversion.

1.3 Contributions and structure of the paper

This article offers three noteworthy contributions to the literature. The first is methodological

as, to the best of our knowledge, our paper is the first to propose a model of the power economy

with ambiguity-averse agents in equilibrium. We believe that this effort is crucial, inasmuch as

market prices have recently followed patterns that were perhaps never observed before. Us-

ing the DRO paradigm with the Wasserstein norm in a classical two-stage stochastic decision

process, we were able to derive a convex formulation of each market participant’s objective un-

der standard assumptions pertaining to investment and contracting. Importantly, the derived

model is of the same order of complexity as standard models of risk-averse agents. We high-

light conditions for the existence of equilibria and analyze the implications of contracts in the

context of ambiguity. As a second contribution, we offer economic intuitions pertaining to the

problem at hand by defining the concepts of ambiguity-adjusted profits and surplus, demon-

strating that, under competitive bidding, the ambiguity-adjusted industry profit is zero. This

finding grounds our proposal within the classical paradigm of perfectly competitive markets.

We also discuss how the classical absence of arbitrage condition in the financial market adapts

to the context of ambiguity-averse agents. Our third contribution is to undertake a stylized

numerical application of our model to the French context, which is characterized by a mix of
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variable renewables and resources to be dispatched. In so doing, we were able to assess and

quantify the impact of ambiguity aversion on installed capacity and welfare. We were also able

to demonstrate that some contracts the revenues for which are uncertain—because, for instance,

they depend on spot-market conditions—might add to ambiguity instead of resolving it. This

implies that, contrary to the classical results in the literature that analyzes risk-averse agents,

such contracts might not prove useful. On the other hand, futures contracts or Contracts for

Differences do much better, as they remove the ambiguity pertaining to the spot-market price.

For ease of exposition, all our results are systematically compared with the classical findings of

the literature dedicated to assessing the impact of risk aversion on the power economy when

the financial market is incomplete.

We view our work as an initial step in incorporating ambiguity with respect to the distri-

bution of uncertain parameters into capacity-expansion models. To maintain clarity and focus,

our models are deliberately simplified, leaving out certain technical complexities associated

with the power sector. Nonetheless, we believe the models provide strong proof of concept,

demonstrating the viability of our approach. The remainder of the paper is structured as fol-

lows. Section 2 first presents a lemma for reducing the L1 Wasserstein distributionally robust

optimization problem with loss function as a parametric linear program with an affine objec-

tive. This lemma is then applied to the power-economy context to derive a complementarity

formulation of the equilibrium for ambiguity-averse investors. This section also offers a proof

of existence of equilibria. In Section 3 we provide several economic interpretations of our model

and demonstrate the nullity of the ambiguity-adjusted power-industry profit with competitive

pricing. In this section we also discuss the effects of contracts on ambiguity. Section 4 presents a

numerical application of the power economy’s investment equilibrium under risk and ambigu-

ity aversion, showing the capacity-freezing incentive in an ambiguous context and the various

hedging capabilities offered by long-term contracts. In Section 5 we summarize our work and

present some policy recommendations.

2 Capacity-investment model under ambiguity
We consider the traditional two-stage stochastic problem of investment and the operation of

generation capacity within the power sector, possibly with the exchange of financial contracts

serving as real securities such as spot-indexed long-term contracts. The novelty of this work

is that investors face an ambiguous wholesale electricity price, as motivated in the introduc-

tion. They make their first-stage decisions based on worst-case expectations of the second-stage

outcomes, i.e. in a distributionally robust way. This section first presents a useful lemma for re-

ducing this worst-case expectation to a convex program (Section 2.1). The economic equilibrium

of the power sector economy with ambiguity-averse agents is then stated as a complementarity

problem (Section 2.2).
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2.1 Convex reduction of worst-case recourse cost under ambiguity

We formulate a corollary of Theorem 4.2 in Mohajerin Esfahani and Kuhn [2018], which is a

generalization of their Corollary 5.4 and an adaptation to our framework. Hence, we consider

the problem of the worst-case expected recourse cost in a two-stage stochastic program where

the uncertain parameter is ambiguous, but the objective of the second stage depends in part

on the realization of this parameter. Following their notations, let us have ξ as an ambiguous

parameter which takes values in the convex and the closed set Ξ = {x ∈ Rm; D ≤ x ≤ D̄},

(ξ̂i)1≤i≤N is a collection of past realizations of ξ and P̂N , the associated empirical distribution

of ξ, which is built from these very past observations. The recourse cost, i.e. the second-stage

value of the two-stage stochastic program, is modeled via a loss function l : Ξ → R, where

l(ξ) = inf
y∈Ru

{
⟨QTy + α, ξ⟩; s.t. Wy ≥ h

}
(1)

is the value of a linear program with a feasible set assumed to be non-empty and compact. ⟨., .⟩
denotes the dot product, α ∈ Rm, QT ∈ Rm×u, W ∈ Rv×u, and h ∈ Rv, with u and v being

integer numbers. As in Mohajerin Esfahani and Kuhn [2018], when moving to the first stage,

we value the loss via the worst-case expectation over a Wasserstein ambiguity set. This set

is defined as the ball centered on the empirical distribution P̂N and of given radius ε for the

Wasserstein metric in the space of probability distributions, a ball that we denote by Bε

(
P̂N
)
.

We choose the L1 norm as the underlying norm on Rm for the Wasserstein metric. This choice

is not constraining but facilitates the exposition inasmuch as it will make the convex reduction

linear, as proved below. The worst-case expectation under ambiguity can be written as the

following infinite-dimension optimization problem:

sup
Q∈Bε(P̂N)

EQ [l(ξ)] . (2)

We emphasize that this problem is a generalization of Corollary 5.4 in Mohajerin Esfahani and

Kuhn [2018] as a result of the presence of parameter α in the objective of the second stage; they

take this parameter as zero in their Corollary. This parameter α is, however, instrumental for

our subsequent models as it will represent the payoff for financial contracts, which can belong

to the set of ambiguous data. By a slight abuse of notation, if a vector zi ∈ Rq is of dimension

q ∈ N for some i ∈ {1, 2, ..., N}, we denote its coordinates by zi1, zi2, ..., ziq.
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Lemma 1 (Linear reduction). The worst-case expectation Problem (2) reduces to the linear program

inf
λ,si ,yik∈R

γ1
i ,γ2

i ≥0

λε +
1
N

N

∑
i=1

si (3a)

s.t. Wyi ≥ h, ∀i ∈ {1, . . . , N} (3b)

− λ ≤ QTyik + αk − γ1
ik + γ2

ik ≤ λ, ∀i ∈ {1, . . . , N}, k ∈ {1, . . . , m} (3c)

⟨QTyi + α − γ1
i + γ2

i , ξ̂i⟩+ ⟨γ1
i , D̄⟩ − ⟨γ2

i , D⟩ ≤ si, ∀i ∈ {1, . . . , N}. (3d)

The proof is provided in Appendix B.1. This extension of the results reported in Mohajerin Es-

fahani and Kuhn [2018] supports our subsequent analysis of investment incentives under am-

biguity for controllable generation technologies.

At this stage in the development of our models, we make a fundamental observation. In

the context of an investment problem, a producer’s second-stage objective, as modeled in rela-

tionship (1), represents its stochastic operational cost in each realization i of the second stage.

Therefore, given the expression of the feasibility set of optimization Problem (1), we observe that

the latter does not contain stochastic parameters. In other words, uncertain data are contained

in the objective function only. This, unfortunately, limits the applicability of this approach to

renewable assets (wind, solar . . .) as they would require accounting for the uncertainty stem-

ming from spot prices—in the objective function—and from the load factor of the assets—in the

constraints. Another result from Mohajerin Esfahani and Kuhn [2018] provides a convex refor-

mulation of the worst-case recourse cost when the ambiguous parameters appear only in the

constraints of the second-stage problem, limiting its usefulness in our setting. Unfortunately,

despite our best efforts, we could not provide a convex reformulation for the case where ambi-

guity is present both in the objective and the constraints of the recourse-cost problem. Therefore,

in the remainder of this article, we focus on the effects of ambiguity on investments by tradi-

tional generators and consider that wind and solar production is exogenous by reasoning on the

residual load, i.e. demand net of renewable production. Methodologically, this feature is a clear

shortcoming of the DRO paradigm with respect to risk aversion.

2.2 The agents of the power economy under ambiguity

The power sector economy comprises a perfectly competitive spot market and a set C of financial

instruments for trading risk between market agents (here, essentially for trading spot-indexed

long-term contracts). As alluded to above, we model a two-stage decision process. Investment

and contracting decisions are taken in the first stage and physical trading of electricity, which

we model along with the optimal operation of power plants, occurs in the second stage. The

second stage is stochastic in the sense that demand, market prices, and payoffs on contracts
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are unknown in the first stage. We model the general case where payoffs on contracts can be

indexed on spot prices or other market data. Market agents have access to historical data on

these random variables, allowing them to build a dataset of N realizations, which we index by

i ∈ {1, ..., N} = N . Agents of the economy define a set G of generators, each of which possesses,

for simplicity, a unique production technology (e.g., CCGT, nuclear . . .) and a representative

consumer, which controls load curtailment. The operation phase, modeled by the second stage,

comprises representative timeblocks t ∈ {1, . . . , T} = T , with respective durations of Ht hours.

We might also refer to timeblocks as periods. All agents are price-takers and know the structure

of the spot and financial markets. They all have access to the same sample of N realizations of

the residual demand, which we denote by (Dit)1≤i≤N in each period t. Each contract c ∈ C yields

revenue (p2
ic)1≤i≤N for realization i and costs p1

c in the first stage. As noted above, we consider

the general formulation where contracts’ returns p2
ic are stochastic but this is not constraining as

it suffices to make this parameter constant to account for futures or forward contracts, as devel-

oped in Section 3.3.2. As in classical models of contracting under risk, the prices of contracts p1
c

are endogenous to our model. Agents are ambiguity-averse towards uncertainty. Furthermore,

the formation of the spot price is the outcome of a market-clearing process, which we can model

by an equilibrium problem for each realization i. The corresponding market price at time t is

denoted by (pit)1≤i≤N .

The general philosophy we pursue is the following. Every agent knows that, in the second

stage, there is a market-clearing process on the physical spot market (electricity exchanges) and

the financial market (contracts’ payoffs exchanges) which provide market prices and optimal

dispatch in each possible realization i. This process delivers some profit to the agent. This

distribution of profit, which is built based on past data, is then valued in the first stage in an

ambiguity-averse way when each agent calculates optimal investments and contracting strate-

gies. For the sake of clarity, we reiterate that all agents consider the same data for realizations

i ∈ {1, 2, ...N} given that they all have access to the same market information. This assumption

ensures consistency as all market agents will anticipate the same market prices and contract

payoffs in each realization i when calculating their first-stage decisions.

2.2.1 The generators

Consider generator g ∈ G, who can invest in generation capacity Kg and sign contracts whose

volumes are denoted by (Wgc)c∈C . A positive volume means that the contract is bought; other-

wise, it is sold. The marginal capital cost is assumed to be constant Cg. In the second stage, the

generator maximizes its profit by targeting a volume of generation in each period xigt, given the

installed capacity, financial investments, and realization i. The generator’s marginal generation

cost cigt is constant and random.
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The second-stage problem for the generator g when scenario i is realized for uncertain pa-

rameters can be written as (the generator minimizes its cost for each realization):

lg(Kg, Wg, ξig) = min
xigt≥0

∑
t

Ht(cigt − pit)xigt + ∑
c
(p1

c − p2
ic)Wgc (4)

s.t. ∀t ∈ T , xigt ≤ Kg [µigt],

with dual variables written in front of their associated constraints. This problem is equivalent

to solving for the necessary and sufficient KKT conditions

∀i ∈ N , t ∈ T , 0 ≤ µigt ⊥ xigt − Kg ≤ 0 (5a)

∀i ∈ N , t ∈ T , 0 ≤ xigt ⊥ Ht
(

pit − cigt
)
− µigt ≤ 0. (5b)

In particular, variables µigt represent second-stage scarcity rents. At the investment stage, gen-

erator g minimizes its investment cost plus its worst-case expected loss (or cost) incurred in the

operation phase. We hold that the uncertain parameter ξg from which ambiguity stems com-

prises the (opposite of) inframarginal rents the generator captures in the spot market and the

(opposite of) the return on the financial contracts:

∀i ∈ N , ξig =

cigt − pit

p1
c − p2

ic

 ∈ RT+|C|. (6)

As explained above, generator g observes the empirical distribution P̂g derived from historical

observations of random parameter ξg but is sensitive to ambiguity. We model generator g’s am-

biguity aversion by computing its worst-case expectation over the ball of radius εg centered on

the empirical distribution P̂g for the L1 Wasserstein metric. We build support for this uncertain

parameter by assuming that it is bounded in the eye of generator g:Ag

Bg

 ≤ ξg ≤

Āg

B̄g

 , (7)

with Ag and Ag belonging to RT, and Bg and Bg belonging to R|C|. The existence of this support

is, in fact, quite natural, as market prices are bounded by price caps, given that consumers have

a bounded willingness-to-pay for electricity. Furthermore, contract prices are also bounded as

they are either fixed or indexed on spot prices. At this stage in the development of our mod-

els, we mention the fundamental remark that, because the spot and financial markets clear in

equilibrium, the realizations of the uncertain parameter ξg faced by generator g depend on first-

stage decisions taken by all agents (invested capacities in particular) via the merit-order effect.

Therefore, we sometimes write this uncertain parameter as ξg(K,W ), where, for ease of ex-

position, we concatenate all investment decision variables into a vector K and all contracting
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decisions into a vector W .

We can now state the first-stage problem in generator g’s first-stage problem as

inf
Kg≥0

Wg∈R|C|

CgKg + sup
Q∈Bεg(P̂g)

EQ

[
lg

(
Kg, Wg, ξg(K,W )

)]
. (8)

It is important to remark here that optimization Problem (8) does not involve second-stage de-

cision variables xigt or µigt calculated from (5a) and (5b), but only market prices pit and contract

payoffs p2
ic. These variables are outcomes of a clearing process that we write explicitly in Section

2.2.3 and which involves these second-stage equations and variables.

Using Lemma 1, Problem (8) reduces to the following linear program (hereafter, for ease of

notation, we might not write the bounds of some summation signs and consider, implicitly, that

i ∈ {1, ..., N}, c ∈ C, and t ∈ {1, ..., T}),

inf
Kg,x′igt,γ

1
igt,γ

2
igt,γ

1
igc,γ2

igc≥0
λg,sig,Wgc∈R

CgKg + λgεg +
1
N ∑

i
sig (9)

s.t. ∀i ∈ N , t ∈ T , x′igt ≤ Kg [µ′
igt]

∀i ∈ N ,

∑t(Htx′igt − γ1
igt + γ2

igt)(cigt − pit) + γ1
igt Āg − γ2

igt Ag

+∑c(Wgc − γ1
igc + γ2

igc)(p1
c − p2

ic) + γ1
igcB̄g − γ2

igcBg

≤ sig [αig]

∀i ∈ N , t ∈ T , −λg ≤ Htx′igt − γ1
igt + γ2

igt ≤ λg [β2
igt, β1

igt]

∀c ∈ C, −λg ≤ Wgc − γ1
igc + γ2

igc ≤ λg [β2
igc, β1

igc].

Variables x′igt model how producer g anticipates, in the first stage, its second-stage production

in a distributionally robust way. Therefore, they generally differ from variables xigt involved

in Problem (4), which model the true production at realization i. Similarly, dual variable µ′
igt

model the ambiguity-adjusted scarcity rents, which might differ from variables µigt.

Problem (9) is equivalent to the following KKT conditions:

11



∀i ∈ N , t ∈ T , 0 ≤ µ′
igt ⊥ x′igt − Kg ≤ 0 (10a)

∀i ∈ N , 0 ≥ αig ⊥

∑t(Htx′igt − γ1
igt + γ2

igt)(cigt − pit) + γ1
igt Āg − γ2

igt Ag

+∑c(Wgc − γ1
igc + γ2

igc)(p1
c − p2

ic) + γ1
igcB̄g − γ2

igcBg − sig

≤ 0

(10b)

∀i ∈ N , t ∈ T , 0 ≥ β1
igt ⊥ Htx′igt − γ1

igt + γ2
igt − λg ≤ 0 (10c)

∀i ∈ N , t ∈ T , 0 ≥ β2
igt ⊥ −Htx′igt + γ1

igt − γ2
igt − λg ≤ 0 (10d)

∀i ∈ N , c ∈ C, 0 ≥ β1
igc ⊥ Wgc − γ1

igc + γ2
igc − λg ≤ 0 (10e)

∀i ∈ N , c ∈ C, 0 ≥ β2
igc ⊥ −Wgc + γ1

igc − γ2
igc − λg ≤ 0 (10f)

∀i ∈ N , t ∈ T , 0 ≤ x′igt ⊥ −µ′
igt − Htβ

2
igt + Htβ

1
igt + αigHt(cigt − pit) ≤ 0 (10g)

0 ≤ Kg ⊥ −Cg + ∑
i

∑
t

µ′
igt ≤ 0 (10h)

∀c ∈ C, Wgc ⊥ ∑
i

[
αig(p1

c − p2
ic) + β1

igc − β2
igc

]
= 0 (10i)

λg ⊥ −εg − ∑
t

∑
i
(β1

igt + β2
igt)− ∑

c
∑

i
(β1

igc + β2
igc) = 0 (10j)

∀i ∈ N , sig ⊥ − 1
N

− αig = 0 (10k)

∀i ∈ N , t ∈ T , 0 ≤ γ1
igt ⊥ β2

igt − β1
igt − αig(cigt − pit) + αig Āg ≤ 0 (10l)

∀i ∈ N , t ∈ T , 0 ≤ γ2
igt ⊥ −β2

igt + β1
igt + αig(cigt − pit)− αig Ag ≤ 0 (10m)

∀i ∈ N , c ∈ C, 0 ≤ γ1
igc ⊥ β2

igc − β1
igc − αig(p1

c − p2
ic) + αigB̄g ≤ 0 (10n)

∀i ∈ N , c ∈ C, 0 ≤ γ2
igc ⊥ −β2

igc + β1
igc + αig(p1

c − p2
ic)− αigBg ≤ 0. (10o)

We draw the attention of the reader to the fact that, when εg = 0, it can be shown that the pro-

ducer becomes risk-neutral and values all realizations i with equal probability 1
N . On the other

hand, when εg → +∞, the producer adopts robust behavior whereby only the worst realization

of the second-stage cost, considering the support of ξg provided in (7), is accounted for when

calculating the investment and contract volumes.

Combining equations (10i) and (10k) gives:

p1
c =

∑N
i=1 p2

ic
N

+
∑N

i=1

[
β1

igc − β2
igc

]
N

∀c ∈ C. (11)

This implies that the price of contract c is equal to the expectation of its second-stage revenue

plus a premium measured by
∑i[β1

igc−β2
igc]

N , which accounts for the fact that producer g is robust

with respect to the ambiguity pertaining to the realization of prices p2
ic. In particular, it can be

shown that, when agent g is neutral to risk, i.e., εg = 0, the premium is equal to zero. This

12



condition generalizes, conceptually, the standard absence of arbitrage condition of the financial

market between the second and first stages in asset- pricing theory (Cochrane [2009]) to the case

of ambiguity-averse market agents. Similarly, combining (10g) with (10h) gives the following

investment criterion if Kg > 0:

Cg =
N

∑
i=1

∑
t∈T

µ′
igt (12)

=
1
N

N

∑
i=1

∑
t∈T

Ht
(

pit − cigt
)
+

N

∑
i=1

∑
t∈T

Ht

(
β1

igt − β2
igt

)
. (13)

We interpret this result by stating that, according to relationship (13), the producer invests if

only it trusts that it recoups its investment cost via the expectation of second-stage short-term

margins
(

pit − cigt
)
, which it adjusts by a premium ∑N

i=1 ∑t∈T Ht

(
β1

igt − β2
igt

)
to account for

ambiguity of the distribution of these margins. Another interpretation can be derived from

relationship (12), stating that the investment is undertaken if the capital cost can be recovered

through the ambiguity-adjusted scarcity rents µ′
igt.

2.2.2 The consumer

As in the case of the generators, we consider a representative consumer whose objective is to

maximize the surplus accrued from electricity consumption. The consumer values electricity

at level PC (which could represent its willingness to pay, or the classical Value of Lost Load,

VoLL in electricity markets) and can curtail the load. We model curtailment by variable eit for

realization i and period t. Therefore, in period t and at realization i of the uncertain parameters,

the consumer’s surplus is (PC − pit) (Dit − eit) Ht. Moreover, the consumer also engages in

financial contracts Wdc, the return on which manifests in the second stage. In realization i, the

second-stage problem of the consumer can be written as

ld(Wd, ξid) = min
eit≥0

∑
t

Ht(eit − Dit)(PC − pit) + ∑
c

Wdc(p1
c − p2

ic), (14)

which translates to the equivalent KKT conditions

∀i ∈ N , t ∈ T , 0 ≤ eit ⊥ pit − PC ≤ 0. (15)

At the contracting stage, the consumer is averse to ambiguity. Here again, we concatenate

the ambiguity parameter into

∀i ∈ N , ξid =

PC − pit

p1
c − p2

ic

 ∈ RT+|C|, (16)
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and build support for it as follows: Ad

Bd

 ≤ ξd ≤

Ād

B̄d

 . (17)

Given a level of ambiguity aversion denoted by the radius εd of the L1 Wasserstein ball centered

around the empirical distribution of ξd, which we denote by P̂d, the representative consumer

signs financial contracts to minimize the worst-case expectation of the second-stage cost (or loss

of surplus). The first-stage problem of the consumer hence can be written as

inf
Wd∈R|C|

sup
Q∈Bεd (P̂d)

EQ

[
ld

(
Wd, ξd(K,W )

)]
. (18)

According to Lemma 1, this problem reduces again to the following linear program:

inf
Wdc,λd,sid∈R

e′it,γ
1
idt,γ

2
idt,γ

1
idc,γ2

idc≥0

λdεd +
1
N ∑

i
sid (19)

∀i ∈ N ,

∑t[Ht(e′it − Dit)− γ1
idt + γ2

idt](PC − pit) + γ1
idt Ād − γ2

idt Ad

+∑c[Wdc − γ1
idc + γ2

idc](p1
c − p2

ic) + γ1
idcB̄d − γ2

idcBd

≤ sid [αid]

∀i ∈ N , t ∈ T , −λd ≤ Ht(e′it − Dit)− γ1
idt + γ2

idt ≤ λd [β2
idt, β1

idt]

∀i ∈ N , c ∈ C, −λd ≤ Wdc − γ1
idc + γ2

idc ≤ λd [β2
idc, β1

idc],

14



which is equivalent to the following KKT conditions

∀i ∈ N , 0 ≥ αid ⊥

∑t[Ht(e′it − Dit)− γ1
idt + γ2

idt](PC − pit) + γ1
idt Ād − γ2

idt Ad

+∑c[Wdc − γ1
idc + γ2

idc](p1
c − p2

ic) + γ1
idcB̄d − γ2

idcBd

− sid ≤ 0

(20a)

∀i ∈ N , t ∈ T , 0 ≥ β1
idt ⊥ Ht(e′it − Dit)− γ1

idt + γ2
idt − λd ≤ 0 (20b)

∀i ∈ N , t ∈ T , 0 ≥ β2
idt ⊥ −Ht(e′it − Dit) + γ1

idt − γ2
idt − λd ≤ 0 (20c)

∀i ∈ N , c ∈ C, 0 ≥ β1
idc ⊥ Wdc − γ1

idc + γ2
idc − λd ≤ 0 (20d)

∀i ∈ N , c ∈ C, 0 ≥ β2
idc ⊥ −Wdc + γ1

idc − γ2
idc − λd ≤ 0 (20e)

∀i ∈ N , t ∈ T , 0 ≤ e′it ⊥ αid(PC − pit)− β2
idt + β1

idt ≤ 0 (20f)

∀c ∈ C, Wdc ⊥ ∑
i

[
αid(p1

c − p2
ic) + β1

idc − β2
idc

]
= 0 (20g)

λd ⊥ −εd − ∑
t

∑
i
(β1

idt + β2
idt)− ∑

c
∑

i
(β1

idc + β2
idc) = 0 (20h)

∀i ∈ N , sid ⊥ − 1
N

− αid = 0 (20i)

∀i ∈ N , t ∈ T , 0 ≥ γ1
idt ⊥ β2

idt − β1
idt − αid(PC − pit) + αid Ād ≤ 0 (20j)

∀i ∈ N , t ∈ T , 0 ≥ γ2
idt ⊥ −β2

idt + β1
idt + αid(PC − pit)− αid Ad ≤ 0 (20k)

∀i ∈ N , c ∈ C, 0 ≥ γ1
idc ⊥ β2

idc − β1
idc − αid(p1

c − p2
ic) + αidB̄d ≤ 0 (20l)

∀i ∈ N , c ∈ C, 0 ≥ γ2
idc ⊥ −β2

idc + β1
idc + αid(p1

c − p2
ic)− αidBd ≤ 0. (20m)

2.2.3 The Nash equilibrium, existence result, and economic interpretation

The economic equilibrium of our power economy is modeled by simultaneously solving the

KKT conditions for all agents: (10a) to (10o) for all generators g ∈ G, and (20a) to (20m) for the

consumer. Spot and contract prices (when they are indexed on spot-market data) are obtained

by solving the second-stage equilibrium problem composed of relationships (5a)-(5b) and (15).

We add the following conditions for spot and financial market-clearing:

∀i ∈ N , t ∈ T , pit ⊥ Dit − ∑
g

xigt − eit = 0 (21a)

∀c ∈ C, p1
c ⊥ Wdc + ∑

g
Wgc = 0. (21b)

Equation (21a) defines the realization of spot prices. As explained above, all realizations are

assumed to be the same for all agents. This assumption might seem strong but it is similar

in spirit to the one adopted in all studies modeling investment decisions under risk aversion,

which holds that the set of scenarios representing randomness are the same for all market agents

and that these agents all have the same information about market fundamentals in every sce-

nario (see for instance Ralph and Smeers [2011], Ehrenmann and Smeers [2011], Abada et al.
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[2017b], Philpott et al. [2016], de Maere d Aertrycke and Smeers [2013], and similar studies).

Definition 1. In the remainder of the present paper, we denote by P our equilibrium problem as consti-

tuted by equations (10a)-(10o) for all generators g ∈ G, (20a)-(20m) for the consumer, market-clearing

constraints (21a)-(21b), and the second-stage equilibrium problem composed of equations (5a)-(5b) and

(15).

Every agent solves a convex optimization problem such that its equivalent KKT conditions

form a monotonous complementarity problem, given market-price realizations and contract

prices. Yet, the economic equilibrium, which is formed by concatenating all KKT and clearing

conditions, is not necessarily a monotonous complementarity problem. The existence of a solu-

tion to this equilibrium can be shown using a fixed-point argument provided that all variables

belong to a compact set. It can be shown that physical variables (second-stage production, cur-

tailment, and invested capacity) are bounded by a limit set by the demand levels. Realizations

of the spot price are non-negative and bounded by the VoLL. Variables αig are bounded because

of (10k) (and similarly for the consumer). Variables β1
igt, β2

igt, β1
igc, and β2

igc are bounded because

of (10j) (and similarly for the consumer). Variables λg are bounded because, if they are not for

say producer g, then the optimization problem (9) is unbounded (the objective being equal to

+∞), which is absurd because a producer always has the choice not to invest, which would

yield a finite objective (similar reasoning applies to the consumer). This, in turn, will imply

that variables γ1
igt, γ2

igt γ1
igc, and γ2

igc are bounded. To demonstrate this claim, one can observe

that γ1
igt and γ2

igt cannot both be positive at the same time for any tuple (i, g, t) because of (10l)

and (10m). Therefore, thanks to (10c) and (10d) and the boundedness of λg, one can deduce

that γ1
igt and γ2

igt are bounded. Similar logic applies for variables γ1
igc and γ2

igc, provided that

contract positions Wgc are bounded, which we demonstrate below. This reasoning naturally

translates to the consumer. It can also be verified that contract prices are bounded because of

the absence of arbitrage conditions in the form (11). It remains to verify the point that contract

volumes are bounded, which is the most difficult task in the proof. Fortunately, a similar ef-

fort has already been undertaken in the literature that studies equilibrium problems under risk

aversion and market incompleteness (see for instance de Maere d’Aertrycke and Smeers [2013]),

providing a valuable source of inspiration for our work. In that literature, existence is ensured

on the assumption that the interior of the intersection of the risk sets of all agents in the econ-

omy is not empty. In the present paper, we require a similar assumption, which we now present.

We remind readers that K denotes the vector concatenating all investment decisions Kg,

g ∈ G and that these variables are upper bounded by a limit that we denote by L. We also

denote by G ∪ {d} the set of all market agents, including the consumer. Finally, we remind

readers that every agent’s ambiguity set, Bϵa(P̂a), depends on the realization of market prices,

which themselves depend implicitly on invested capacities K. Therefore, in the remainder

of this section, we make this dependence explicit by denoting ambiguity sets by Bϵa(P̂a(K)).
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Finally, Int(A) will denote the interior of a given set A.

Assumption H1. For any capacity mix K ∈ [0, L]|G|, the interior of the intersection of all market

agents’ ambiguity sets is not empty:

Int

 ⋂
a∈G∪{d}

Bϵa(P̂a(K))

 ̸= ∅. (22)

We now present our existence result:

Proposition 1. Under Assumption H1, Problem P has a solution.

A proof is proposed in Appendix B.2.

3 Profits, welfare, and contracts under ambiguity

3.1 On the difference between ambiguity and risk aversion from a

modeling perspective

We remind readers of the expression of the worst expectation of the second-stage cost that pro-

ducer g incurs:

sup
Q∈Bεg(P̂g)

EQ

[
lg

(
Kg, Wg, ξg(K,W )

)]
. (23)

At first sight, this expression is very close to that of a risk-averse agent valuing risk via a coher-

ent risk measure (Föllmer and Schied [2002]),

sup
Q∈Mg

EQ

[
lg

(
Kg, Wg, ξg

)]
, (24)

where the so-called risk set Mg is a compact and convex set of probability measures. Given

that set Bεg

(
P̂g
)

is also compact and convex, one could consider our modeling of aversion to

ambiguity as a particular instance of risk aversion when risk is measured with a coherent risk

measure. This is not always true, mainly because risk set Mg is fixed and does not depend

on second-stage parameters and profits nor on first-stage investment or contracting decisions.

This feature makes it possible to invoke the envelope theorem to derive the classical comple-

mentarity conditions inherent to the investment decision under risk aversion, which states that

the producer invests only if it trusts that it can recoup the investment cost via the risk-adjusted

expectation of its second-stage margins (estimated with scarcity rents). This condition breaks

with DRO because set Bεg

(
P̂g
)

depends explicitly on second-stage uncertain prices. It also

depends on the investment decisions via the formation of market prices according to the merit-

order logic. We remind readers that these prices do intervene in the definition of the empirical

probability measure P̂g and that this measure is built based on the realization of spot prices (in
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particular). Of course, this reasoning carries over to the consumer. Overall, these observations

highlight the fundamental difference between risk and ambiguity aversion in our setting.

3.2 Ambiguity-adjusted profits and welfare in a competitive market

It is well known that under pure and perfect competition, market prices allow producers to

recoup exactly their total supply cost, provided that marginal capital and operational costs are

constant. In other words, producers’ profits should equal zero in perfectly competitive mar-

kets. This property also holds when agents manage risk, even when they are risk-averse and

value risk via coherent risk measures. In particular, it can be shown that, in the latter case,

risk-adjusted profits are always null at equilibrium (see, for instance, Ralph and Smeers [2011],

Abada et al. [2017a], Ferris and Philpott [2022] and related articles). The natural question is

whether this result also applies when agents are ambiguity-averse. The main objective of this

section is to show that the answer is yes, at least in our setting.

To do so, we first need to properly define what we mean by ambiguity-averse profits. As

explained in Section 2.2.1, the objective function of producer g ∈ G, who minimizes its capital

cost plus its worst expectation of the operational cost, can be reformulated via Lemma 1 into

Problem (9). Therefore, it is natural to define producer g’s ambiguity-adjusted profit as:

Definition 2. Producer g’s ambiguity-adjusted profit is defined as

AAPg = −
(

CgKg + λgεg +
1
N ∑

i
sig

)
. (25)

A similar derivation of the consumer surplus and social welfare at equilibrium follows. We

define the concept of an ambiguity-adjusted consumer surplus following similar logic:

Definition 3. Ambiguity-adjusted consumer surplus is defined as:

AACS = −
(

λdεd +
1
N ∑

i
sid

)
. (26)

We can now define ambiguity-adjusted social welfare as the sum of the (ambiguity-adjusted)

producer’s profit and consumer surplus:

Definition 4. Ambiguity-adjusted social welfare is then defined as:

AASW = ∑
g∈G

AAPg + AACS. (27)

We now provide a result indicating that profits under ambiguity are always null at equilibrium.

Proposition 2 (Nullity of generator’s profits). For any solution to equilibrium Problem P, ambiguity-

adjusted profits are null:

AAPg = 0, ∀g ∈ G. (28)
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The proof is provided in Appendix B.3. At equilibrium, the ambiguity-adjusted industry profit

is null. This is indeed an adaptation of the standard condition for competitive markets in the

context of ambiguity and imperfect information. We draw the reader’s attention to the fact that

this condition holds even with the existence of financial contracts, reflecting a form of the ab-

sence of an arbitrage constraint in the financial market under ambiguity, as discussed in Section

2.2.1.

3.3 Contracts and ambiguity

It is widely admitted that, when properly designed, contracts can mitigate the detrimental im-

pact of risk on welfare and investments, when agents are averse to risk (de Maere d Aertrycke and

Smeers [2013], Ehrenmann and Smeers [2011], Abada et al. [2017b] and similar studies). This ca-

pacity holds not only for futures of forward contracts but also for some spot-indexed contracts,

such as baseload or peakload contracts (Abada and Ehrenmann [2023], de Maere d Aertrycke

et al. [2017]). In this section, we discuss the impact of hedging contracts when agents are averse

to ambiguity.

3.3.1 Some contracts might heighten ambiguity

In a risk-averse setting, contracts can mitigate risk when they are correlated negatively with an

agent’s revenue. In our setting, where the revenue derived from a contract p2
ic is stochastic (be-

cause the contract could be indexed on the spot-market price, for instance), agents will naturally

include these contracts’ revenues in the set of ambiguous parameters, as in (6) and (16). There-

fore, as such, contracts might add to the ambiguity. We can illustrate this effect mathematically

by considering producer g’s ambiguity-adjusted profit,

AAPg = −
(

CgKg + λgεg +
1
N ∑

i
sig

)
, (29)

and complementarity relation (10b) that explains the formation of variables sig,

∀i ∈ N , sig ≥ ∑
t
(Htx′igt − γ1

igt + γ2
igt)(cigt − pit) + ∑

t
γ1

igt Āg − γ2
igt Ag

+ ∑
c
(Wgc − γ1

igc + γ2
igc)(p1

c − p2
ic) + ∑

c
γ1

igcB̄g − γ2
igcBg,

which we can reformulate as: ∀i ∈ N ,

sig ≥ ∑
t

Htx′igt(cigt − pit) + ∑
t

γ1
igt

[
Āg − (cigt − pit)

]
+ γ2

igt

[
(cigt − pit)− Ag

]
(30)

+ ∑
c

Wgc(p1
c − p2

ic) + ∑
c

γ1
igc

[
B̄g − (p1

c − p2
ic)
]
+ ∑

c
γ2

igc

[
(p1

c − p2
ic)− Bg

]
.
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Because γ1
igt and γ2

igt are non-negative and because

Ag

Bg

 ≤ ξig =

cigt − pit

p1
c − p2

ic

 ≤

Āg

B̄g

 , (31)

we conclude that the presence of contracts increases sig, which in turn reduces the ambiguity-

adjusted profit as formulated in (29). The natural consequence is that such ambiguous contracts

will be avoided by market agents. Of course, this result is driven by the fact that the presence

of contracts does not change the support of random spot prices (Ag and Ag). Therefore, if one

wants contracts to contribute to mitigating ambiguity, one must propose mechanisms that can

reduce the support of ambiguity. This is the task to which we now turn.

3.3.2 Reducing ambiguity with Contracts for Difference

In this section we adapt our model to accommodate a type of contract that mitigates the effect

of ambiguity and will likely be signed by ambiguity-averse market agents, namely Contracts

for Difference (CfDs hereafter). CfDs are interesting in our context as they erase the ambiguity

perceived in market data. In its simple design, a CfD is a contractual exchange between pro-

ducers and consumers that swaps the market price with a fixed price named the "strike" price.2

Such arrangements are usually signed for large capital-intensive investments such as nuclear

reactors.3 In our proposal, the CfD is contracted between a generator g and the representative

consumer based on a strike price S and a covered capacity KS
g .4 In a nutshell, we consider a

basic CfD agreement: a producer g endowed with a CfD receives the strike price S irrespective

of the market price. The difference between the spot-market price and the strike must be settled

between the producer and the consumer: if the spot price exceeds S in realization i and period t,

the producer pays the difference pit − S, multiplied by the production, xigt, to the consumer. If,

on the other hand, the spot price falls below S, the consumer pays (S − pit).xigt to the producer.

To keep the length of the paper reasonable, we relegate the formulation of this problem to

Appendix C, as it reveals some redundancies with our base model of Section 2. We simply men-

tion here that, by erasing the price risk, the CfD mitigates the extent of ambiguity as it reduces

the size of the support of ambiguous parameters related to the spot market price. Therefore, we

expect this instrument to be more efficient at fostering investments and increasing welfare than

2Actually, such CfDs erase all uncertainty, and hence both ambiguity and risk. A relaxed version where ambiguity
is reduced but risk remains would be to replace the strike price with a corridor [X, Y]: when the spot price p lies
between X and Y, the producer receives the price. When p ≤ X, it receives X and when p ≥ Y, it receives Y.

3For example, in 2016 EDF, the French nuclear producer, signed a CfD with the UK government for the development
of the 3.2 GW Hinkley Point C reactor with a strike price of 92 £/MWh (2012 prices).

4Another version would be to cover a volume of energy; this is equivalent in our framework. The limitation with
capacity covered by the CfD is needed to ensure the boundedness of our variables, especially if the strike is strictly
above the total cost. For ease of exposition, we assume that the generator under the CfD does not invest in uncovered
physical capacity.
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other contracts whose payoffs are stochastic. Of course, the effect would be similar with any

other kind of contract that removes ambiguity, such as futures or forward contracts.

4 A numerical application to the French power system
In this section we illustrate the effects of ambiguity on welfare and capacity investment in a

stylized representation of the French power system. We highlight how ambiguity aversion, if

sufficiently high, destroys all incentives to invest and how spot-related contracts are unable to

correct this phenomenon when they are ambiguous—but a CfD or a futures contract might.

4.1 Data and calibration

We focus on the main power-producing technologies in France: nuclear reactors (denoted by

Nuclear), gas-fired load-following power plants (Mid gas), open- and closed-cycle gas turbines

(OCGT and CCGT), and fuel-oil-powered plants for peak production (Fuel Oil). We deliber-

ately ignore coal-fired plants as they are being progressively closed in Europe. Solar and on-

shore/offshore wind production are assumed to be exogenous. Therefore, we subtract their

production from the load and focus instead on residual demand. We build N = 60 realizations

(or scenarios) for residual demand Dit and the variable cost of each generator cigt. This number

is selected to keep the simulation time for our models reasonable. The operational phase of the

second stage is composed of three timeblocks t ∈ {1, 2, 3}, with respective durations accounting

for 20%, 70%, and 10% of the 8760 hours for the year (i.e. H1 = 1752, H2 = 6132, and H3 = 876).

Therefore, our modeling of time represents one typical year of operations. We now explain how

to populate the 60 scenarios.

• Regarding the residual demand Dit, we use a dataset of past hourly demand and wind

and PV (solar photo-voltaic) production in France between 2015 and 2024 (10 years of

data), which we obtain from the transparency platform of the European Network of Trans-

mission System Operators ENTSO-E.5 For each year of data, we induce some randomness

in the residual load by shifting the solar and wind production randomly by one or two

weeks. Then, for each of these new vectors of hourly data, we use the first 20% quantile

(of residual demand) to generate data for timeblock t1. Similarly, data from between the

20% and 90% quantiles will be used for timeblock t2 and data from the last 10% quantile

will be used for timeblock t3. This procedure preserves time correlations and allows us to

populate the 60 scenarios required. Figure 2 depicts a histogram of the obtained residual

demand in each period.

• Regarding variable costs cigt, we make use of the following expression,

∀i ∈ N , g ∈ G, t ∈ T , cigt = cbc,gt + δig + eg.pCO2
i ,

5See https://transparency.entsoe.eu/.
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Figure 2: Histogram of the historical residual demand in the three timeblocks.

where cbc,gt is a technology-dependent base case operational cost (or OPEX, comprising the

fuel cost and Operations and Maintenance cost), which we perturb by adding a random

noise δig calibrated to reflect the variability of input commodity prices as reported in CRE

[2024], eg is the carbon content of the technology, and pCO2
i a random carbon price.6

• Regarding spot-indexed contracts, we model two instruments: i) a baseload contract which

hedges the second-stage electricity price in timeblock 1 (low residual demand), i.e, p2
i,baseload =

pi1, and ii) an average contract which hedges the mean power price over the whole year in

each realization p2
i,average = ∑t Ht pit/8760. We consider such instruments because, on

the one hand, they are in widespread use in the power economy today while, on the other

hand, they have been shown in the literature on risk-averse agents to enhance welfare and

foster investments.

As envisaged in the French regulatory regime today, CfDs are offered to hedge investments in

nuclear or renewables plants. For ease of exposition of our results, we focus in the present paper

on those pertaining to nuclear production. Therefore, we study a nuclear CfD covering capacity

KS
Nuclear = 48 GW, which we set at the installed capacity of nuclear production calculated when

agents are ambiguity-neutral and perfectly competitive. We vary the strike price of the CfD by

testing three values: 30, 70, and 110 €/MWh. We note, in passing, that the latter value is the

one that the French nuclear incumbent (EDF) secured prior to investing in the Hinkley Point C

reactor in the UK (accounting for inflation and exchange rates).

Capital costs are transformed into annuities using expenditures and the lifetime of genera-

tion assets taken from Pietzcker et al. [2021], at a 4% interest rate. Table 1 summarizes our data

for producers.

6The random carbon price pCO2
i is uniformly drawn from {60, 80, 100}€/tCO2, lying in the range of observed prices

of the EU-ETS since 2022 (CRE [2024], p. 34).
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CAPEX (€/MW/year) Base case variable cost (€/MWh) Carbon content (g/kWh)
Nuclear 132605 30 0
CCGT 45471 60 200

Mid gas 35366 100 300
OCGT 20209 210 350
Fuel oil 75785 150 400

Table 1: Cost data for production technologies.

The value of Lost Load PC is taken at 3000 €/MWh. The representative consumer is as-

sumed to be risk- and ambiguity-neutral (εd = 0) because, on the one hand, it does not face

physical investment decisions in our framework while, on the other hand, it is represented

by the French State in the contracting phase, which has access to many more hedging securi-

ties than the rest of the power economy. On the production side, we assume no existing ca-

pacity prior to the investment stage (in other words, we adopt a green-field approach). We

also assume that generators have the same level of aversion to ambiguity, which we denote

by ϵ and vary in our simulations, but this does not imply that they face the same risk or

ambiguity exposure because their profits vary. The support bounds for the ambiguous pa-

rameters ξg and ξd are calibrated at their element-wise extrema across realizations, account-

ing for a price cap on the spot price taken at the Value of Lost Load PC. Therefore, we have:

Āg = maxi,t cigt, Ag = mini,t cigt − PC, B̄g = B̄d = PC, Bg = Bd = −PC, Ād = PC, and Ad = 0.

We compare all our results with the case where agents are averse to risk but not to ambiguity.

As alluded to above, this situation is now routinely modeled in the OR literature even in the

case of market incompleteness. In this setting, we model risk aversion by the Conditional Value

at Risk (CVaR), which is a particular instance of a coherent risk measure (Artzner et al. [1999])

and can be computed via linear programming (Rockafellar and Uryasev [2000]). We refer the

reader to Appendix D, where we present the full resulting equilibrium model. Here again, pro-

ducers exhibit the same level of risk aversion denoted by ϵCVaR, which we vary between 0 and

1, without necessarily facing the same risk exposure, and consumers are risk-neutral.

In total, we consider the following eight simulation cases (or benchmarks):

- Ambiguity-averse generators without financial contracts (denoted by "Ambi. - None" in

our results).

- Ambiguity-averse generators with the ’baseload’ contract ("Ambi. - Base").

- Ambiguity-averse generators with the ’average’ contract ("Ambi. - Avg.").

- Ambiguity-averse generators with a CfD of strike x €/MWh for nuclear generation ("Ambi.

- CfD x"). We remind readers that we undertake a sensitivity analysis with respect to the

price of the CfD as in x ∈ {30, 70, 110}.
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- Symmetrically, we also consider the same cases for risk-averse generators and denote

them, respectively, as "Risk - None", "Risk - Base", "Risk - Avg.", and "Risk - CfD x".

All complementarity problems are solved using the commercial PATH solver in their exten-

sive form.

4.2 Results

This section presents our main findings. We focus on the comparative effects of ambiguity and

risk on welfare, total capacity and capacity mix, and those of the considered financial contracts.

Figure 3 presents our results regarding welfare. In the ambiguity-averse case (left and center

panels), we find that welfare diminishes with the level of ambiguity aversion. Ultimately, the

power economy collapses for extreme values of ambiguity aversion, with its welfare vanishing,

except for cases with a CfD. Surprisingly, we observe that spot-indexed contracts do not run

counter to this detrimental adverse effect of ambiguity. This is a consequence of their adding

to ambiguity as they deliver uncertain revenue, as discussed in Section 3.3.1. Similarly, as can

be seen in the center panel, a CfD with a strike price that is too low does not prevent welfare

from vanishing (for instance, in our numerical example, 30 €/MWh is lower than the average

variable cost for nuclear production and does not compensate for capital expenditures). On the

other hand, CfDs with sufficiently high strike prices mitigate the diminishing effects of high

ambiguity aversion on welfare.
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Figure 3: Welfare with ambiguity-averse agents with spot-indexed prices (Left), with CfDs (Cen-
ter), and with risk-averse agents with and without CfDs (Right).

Our results obtained for the risk-averse cases (right panel of Figure 3) are in line with the lit-

erature. First, as risk aversion rises, welfare diminishes. This reduction is, however, much less

detrimental to the economy than the effects of ambiguity aversion, as we observe that welfare

does not reach zero for an extreme level of risk aversion. In other words, risk aversion does not

make the power economy collapse but simply makes it less efficient. This is because an overly

risk-averse investor focuses on the worst of historical realizations of its profit when valuing its
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project, whereas an overly ambiguity-averse investor would consider a hypothetical realization

lying on an edge of the support for ambiguity, leading to much lower profits and almost no

incentive to invest. Second, spot-indexed contracts are, contrary to what we observed for ambi-

guity, welfare-augmenting, as the "average" contract provides nearly perfect risk transfers such

that welfare remains almost constant in our example. Third, CfDs, if calibrated properly, also

increase welfare.

Results related to the invested physical capacity are reported in Figure 4. They confirm the

insights provided by our analysis of welfare. Aversion to ambiguity harms investments but

CfDs with sufficient strike prices can mitigate this effect. In line with the literature, we find that

spot-indexed contracts limit the issue when there is aversion to risk, whereas they do not do so

under ambiguity. In Appendix A (Figure 5), we provide additional insights regarding the mix

of invested capacities under ambiguity. These insights highlight that the impact of ambiguity

on the system’s capacity translates to all technologies. We also observe that a nuclear CfD with

a high strike price does preserve nuclear capacity at the expense of some other technologies

(OCGT and CCGT) because greater nuclear capacity reduces inframarginal rents at peak pro-

duction. Naturally, the effect is the opposite with a low strike price.

Why are spot-indexed contracts inefficient at mitigating the detrimental impact of ambigu-

ity? In reality, in a risk-averse context, these contracts allow market agents to hedge their prof-

its according to some realization-dependent outcome because returns in the spot and financial

markets can be made correlated via the same realization of some uncertain parameter, in our

case the spot-market price. This is why such contracts will be sought by (risk-averse) investors.

With ambiguity-averse agents, this correlation is lost: returns in the spot and financial markets

become decoupled as the worst-case distribution of the uncertain returns may not be the same

in both markets. Putting it differently, the worst-case distribution of spot returns may be cal-

culated with a support of the spot-market price that does not change with the introduction of

spot-indexed contracts. Therefore, these contracts may fail to mitigate the impact of ambigu-

ity aversion. Only suppression of the price risk, such as that provided by a CfD, can do so.

Naturally, in our framework, this result stems from the fact that the presence of spot-indexed

contracts does not alter the support of the distribution of the random spot price (Ag and Ag).

We discuss the implications of this mechanism in Section 5.

5 Discussion
During the energy transition, the detrimental effect of risk on capacity investment in power

systems and its management through long-term contracts have become a central focus. The re-

cent energy crisis in Europe, the surge in renewables capacities going hand-in-hand with zero
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Figure 4: Total physical capacity with ambiguity-averse agents with spot-indexed contracts (Left),
with CfDs (Center), and with risk-averse agents with and without CfDs (Right).

or negative spot prices, or the impact of market design reforms cast doubt on the informative

power of historical market data or the empirical distribution of uncertain parameters such as

prices for future revenues. The result is increased aversion to ambiguity. Yet, decarbonization

policies rely on both electrification and cutting emissions from the power sector, and new green

investments are required. Therefore, understanding how ambiguity affects investments, how it

can be mitigated, and how it compares with classical aversion to risk is of paramount impor-

tance.

We propose a novel model of the power economy with price-taking agents who are ambiguity-

averse and may exchange contracts with each other. The model relies on the traditional two-

stage capacity-expansion framework in equilibrium, to which we add a representation of am-

biguity in the decision process. Aversion to ambiguity is modeled via Wasserstein distribution-

ally robust optimization, inspired by the seminal work of Mohajerin Esfahani and Kuhn [2018].

We recast this infinite dimensional problem into linear programs with little need to strengthen

traditional assumptions for capacity-expansion models. We provide an existence result and

successfully apply our model to a simple representation of the French power system, which is

characterized by a variety of production technologies.

We prove a form of the welfare theorem by assessing the nullity of the ambiguity-adjusted

producers’ profits and discuss the adaptation of the absence of an arbitrage condition in the

financial trade to accommodate ambiguity. Through our analysis of the complementarity con-

ditions, we are able to indicate why some contracts with uncertain remuneration fail to reduce

ambiguity. Practically, this implies that such contracts might be unable to mitigate the detrimen-

tal impact of ambiguity on welfare and investment as they would classically do in a risk-averse

environment. Results would have been more positive if some spot-indexed contracts were able

to reduce the support of the spot-price distribution. Finding such a mechanism would make it
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possible to reap the benefits of contracts even in the presence of aversion to ambiguity. We leave

the investigation of such schemes to future research. On the other hand, we indicate how some

existing schemes, such as CfDs, effectively restore efficiency when there is ambiguity, primar-

ily because these contracts erase the price risk and thus the ambiguity. Their main drawback,

however, is that they might distort competition. Indeed, producers benefiting from a profitable

CfD might no longer react swiftly to the price signal, harming the efficiency of spot markets. In

fact, similar contractual arrangements for solar and wind production—such as Power Purchase

Agreements (PPAs) or Feed-In Tariffs—are believed to be a key driver of the crisis of negative

prices in Europe as some contracted renewable production is offered irrespective of the spot

market price. This could induce massive oversupply in hours of low demand, especially when

flexibility and storage capacity are insufficient. Such an effect can, in turn, increase the level

of ambiguity aversion of market participants. Therefore CfDs with corridors might induce an

acceptable balance between reducing ambiguity and keeping producers reactive to price signals.

We see our work as a very first step towards integrating ambiguity with respect to the dis-

tribution of some uncertain parameters in models of capacity expansion. Therefore, our models

are intentionally simplified, omitting many technical aspects of the power economy. Yet, we

believe that these models serve as solid proof of concept, demonstrating the feasibility of this

endeavor. With our models, we show that some instruments may succeed in addressing risk

but fail with respect to ambiguity. This raises the more fundamental question of how risk-born

and ambiguity-born incentives among agents can be disentangled, which should require addi-

tional research. Future research could also investigate the possibility of adapting the ambiguity

sets of agents that depend on the realizations of data (the so-called adaptative distributionally

robust framework), the multiplicity of equilibria under ambiguity, or the generalizability of our

findings with other kinds of contracts.
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APPENDIX

A Numerical result - Invested capacity per generator
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Figure 5: Invested physical capacity per generation technology with ambiguity-averse agents with-
out (Up) and with (Bottom) a CfD on nuclear capacity. Fuel-oil-powered plants are not invested in
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Figure 6: Invested physical capacity per generation technology with risk-averse agents without
(Up) and with (Bottom) a CfD on nuclear capacity. Fuel-oil-powered plants are not invested in.

B Proofs

B.1 Proof of Lemma 1

Proof. The support set Ξ is convex and closed. l is an infimum of linear functions of parameter ξ

such that l is concave and is not −∞ on Ξ because the feasible set of the second stage is assumed

to be non-empty. Therefore, Theorem 4.2 in Mohajerin Esfahani and Kuhn [2018] applies and

Problem (2) reduces to

inf
λ,si ,zi ,νi∈R

λε +
1
N

N

∑
i=1

si (32)

s.t. ∀i ∈ N , [−l]∗(zi − νi) + σΞ(νi)− ⟨zi, ξ̂i⟩ ≤ si

∀i ∈ N , ||zi||∗ ≤ λ,

where ||.||∗ is the dual norm of the underlying norm of the Wasserstein metric, which, we re-

mind the reader, is here the L1 norm. Therefore, ||.||∗ is the infinite norm ||.||∞. Function σΞ is
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the support function for Ξ and [−l]∗ is the conjugate function for −l. By definition, for all i ∈ N ,

σΞ(νi) = sup
D≤ξ≤D̄

⟨νi, ξ⟩

= inf
γ1

i ,γ2
i ≥0

νi=γ1
i −γ2

i

⟨γ1
i , D̄⟩ − ⟨γ2

i , D⟩,

where γ1
i , γ2

i are the dual variables associated with ξ ≤ D̄ and ξ ≥ D, respectively, and the

second line reflects the strong duality in this linear program. Moreover, also by definition of the

conjugate function, for all i ∈ N ,

[−l]∗(zi − νi) = sup
ξ∈Rm

(
⟨zi − νi, ξ⟩+ inf

Wyi≥h
⟨QTyi + α, ξ⟩

)
= inf

Wyi≥h
sup
ξ∈Rm

⟨QTyi + α + zi − νi, ξ⟩

=

0 if Wyi ≥ h and QTyi + α = −zi + νi

−∞ otherwise
,

where the second line follows from the minimax theorem, as the feasibility set of the second

stage is compact and convex. Incorporating the previous results into Problem (32), replacing

zi and νi with −QTyi − α + γ1
i − γ2

i and γ1
i − γ2

i , respectively, and rewriting ||zi||∞ ≤ λ as

−λ ≤ zik ≤ λ for all k ∈ {1, ..., m} ends the proof.

B.2 Proof of Proposition 1

Proof. As explained in Section 2.2.3, it remains to demonstrate that contract volumes Wgc and

Wdc are bounded for equilibrium to exist. We adapt the proof of the existence of equilibria with

convex risk measures elaborated in de Maere d’Aertrycke and Smeers [2013] to our ambiguity

framework. For clarity and readability, we intentionally retain some of the notations and word-

ing used in that article.

In this proof, we amend our index notation slightly by making index g denote any mar-

ket agent—a producer or the consumer—g ∈ G ∪ {d}. We begin the proof by noting that the

problem for any agent g ∈ G ∪ {d} takes the form:

inf
Wg∈R|C|

Kg≥0

sup
Q∈Bϵg (P̂g(K))

EQ[−πg] + CgKg + ∑
c

Wgc

(
p1

c − EQ[p2
c ]
)

, (33)

where πg denotes agents g’s second-stage profits accrued from the physical spot market and

where we make Cd = 0. For any capacity mix K ∈ [0, L]|G|, we introduce the set of not overly
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attractive contract prices for agent g ∈ G ∪ {d} as:

Pg(K) =
{

p1 ∈ R|C|; ∃Q ∈ Bϵg(P̂g(K)), ∀c ∈ C, p1
c = EQ[p2

c ]
}

. (34)

Pg(K) is a compact and convex set because Bϵg(P̂g(K)) is convex and EQ[p2
c ] is bounded be-

cause p2
c is indexed on the spot price, which is itself bounded. We denote by P̄(K) the inter-

section of the sets Pg(K) for all agents. Assumption H1 implies that the interior of P̄(K) is not

empty.

The sets of not overly attractive financial prices allow us to reformulate the worst-case

second-stage outcome at a given capacity mix, supQ∈Bϵg (P̂g(K)) EQ[−πg]+CgKg +∑c Wgc
(

p1
c − EQ[p2

c ]
)
,

as (some dual variables are written next to their constraints)

= sup
Q∈Bϵg (P̂g(K))

EQ[−πg] + CgKg if p1 ∈ Pg(K) (35)

s.t. ∀c ∈ C, p1
c = EQ[p2

c ] [Wgc]

= +∞ otherwise.

The second-stage profits πg are bounded because they are accrued from the spot market. There-

fore, the objective of the reformulated Problem (35) is finite whenever p1 ∈ Pg(K). Its feasibility

constraint is convex and verifies strong Slater conditions when p1 ∈ Int(Pg(K)). Thus, the set

of optimal dual variables in the reformulated Problem (35) is non-empty, convex, and compact.

Inasmuch as financial positions Wgc act as dual multipliers of the reformulated problem’s feasi-

bility constraint, we have the following lemma:

Lemma 2. For any capacity mix K ∈ [0, L]|G| and for any agent g ∈ G ∪ {d}, the set of optimal

solutions to problem

inf
Wg∈R|C|

sup
Q∈Bϵg (P̂g(K))

EQ[−πg] + CgKg + ∑
c

Wgc

(
p1

c − EQ[p2
c ]
)

,

is non-empty, convex, and compact iff p1 ∈ Int(Pg(K)).

A competitive equilibrium of our power economy, if it exists, is such that the financial

market clears, ∀c ∈ C, ∑g∈G∪{d} Wgc = 0, and the invested capacities and financial positions

are optimal for all agents. It can easily be shown that the financial-clearing constraint, ∀c ∈
C, ∑g∈G∪{d} Wgc = 0, can be replaced by modeling a financial-market agent acting as an arbi-

trageur whose decision variables are the contract prices p1
c and whose objective is to minimize
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contract volume shortfalls as follows:

p1 ∈ argminq∈R|C| ∑
c
−qc

 ∑
g∈G∪{d}

Wgc

 . (36)

Therefore, a Nash equilibrium (K,W , p1) of the (new) game where agents G ∪ {d} select phys-

ical capacity K and financial positions W , which together solve Problem (33), and where the

financial-market agent selects price contracts p1
c which solve Problem (36), is also an equilib-

rium of our Problem P. Notably, if it exists, a Nash equilibrium of this new game ensures that

the financial market clears.

Let us now consider a parameter r > 0 and the truncated game where financial positions are

bounded by r as in ∀(g, c) ∈ (G ∪ {d}) × C, |Wgc| ≤ r, and where contract prices belong to

the non-empty, convex, and compact set ∆ = ∏c∈C [mini p2
ic − 1, maxi p2

ic + 1]. We remind

readers that physical capacities already belong to the convex and compact set [0, L]|G|. Because

the programs of all agents are convex in the strategies of the other agents and continuous in

their strategy and because the set of strategies of the truncated game is non-empty, convex, and

compact, we can invoke Debreu’s theorem (Debreu [1952]) to state that there exists an equilib-

rium (Kr,W r, p1,r) of the truncated game. This equilibrium also verifies the financial market-

clearing. Otherwise, the financial market agent selects price p1,r
c = mini p2

ic − 1 (or p1,r
c =

maxi p2
ic + 1) for the contracts that are not cleared, such that players position these contracts

at −r (resp. +r). The objective of the financial market agent is thus −r(|G|+ 1)(mini p2
ic − 1)

(resp. r(|G|+ 1)(maxi p2
ic + 1)), which is clearly not optimal and thus absurd.

We then let r run to +∞ and consider a sequence of equilibria of the truncated games

(Kr,W r, p1,r)r. We wish to find some game m such that Wm is in the interior of the admissible

set of financial positions, i.e., ∀(g, c) ∈ (G ∪ {d}) × C, |Wm
gc| < m. Because the agents solve

convex minimization programs, the optimal financial positions Wm in the m truncated game

would also be optimal in the initial game. Moreover, we already have that p1,m is bounded

independently of m, as it belongs to ∆. In turn, the equilibrium (Km,Wm, p1,m) would be an

equilibrium of our initial Problem P.

We turn now to showing the existence of such m. By definition, if the sequence (W r)r is

bounded, such m exists. Suppose the sequence is unbounded. There then exists a player g with

an unbounded sequence of financial positions. The objective function of player g is, for all r,

large enough such that Wr
g ̸= 0,

EQ[−πg(ω)] + CgKr
g + ||Wr

g||∑
c

Wr
gc

||Wr
g||

(
p1,r

c − EQ[p2
c(ω)]

)
.
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The first two terms of the objective are bounded independently of r. Moreover, for a given r, if

there existed a distribution Qr such that

∑
c

Wr
gc

||Wr
g||

(
p1,r

c − EQr [p2
c(ω)]

)
> 0,

then Qr would be the worst-case distribution and the agent could achieve an infinite objective,

as the norm of Wr
g runs to infinity, which is absurd. Therefore, for a sufficiently large r, we have

∀Q ∈ Bϵg(P̂g(K
r)), ∑

c
Wr

gc

(
p1,r

c − EQ[p2
c(ω)]

)
≤ 0.

Now recall that the financial markets clear at a Nash equilibrium of the truncated game. Thus,

for a sufficiently large r, there exists a (smallest) subset Jr of players with non-null positions

which balance that of player g, i.e. ∑j∈Jr
Wr

j = −Wr
g. Following similar reasoning for positions

Wr
j , we must have

∀j ∈ Jr, ∀Q ∈ Bϵj(P̂j(K
r)), ∑

c
Wr

jc

(
p1,r

c − EQ [p2
c(ω)]

)
≤ 0. (37)

Concatenating and then summing relations (37) for j ∈ Jr, we obtain

∀Q ∈
⋂
j∈Jr

Bϵj(P̂j(K
r)), 0 ≥ ∑

c

(
∑
j∈Jr

Wr
jc

)(
p1,r

c − EQ[p2
c(ω)]

)
= ∑

c
−Wr

gc

(
p1,r

c − EQ[p2
c(ω)]

)
,

where
⋂

j∈Jr
Bϵj(P̂j(K

r)) is non-empty thanks to Assumption H1. Hence, as (Wr
g)r is unbounded,

we can find some m for which Wm
g ̸= 0 and

∀Q ∈ Bϵg(P̂g(K
m)), ∑

c
Wm

gc

(
p1,m

c − EQ[p2
c(ω)]

)
≤ 0

∀Q ∈
⋂

j∈Jm

Bϵj(P̂j(K
m)), ∑

c
Wm

gc

(
p1,m

c − EQ[p2
c(ω)]

)
≥ 0.

Therefore, Wm
g defines a separating hyperplane between the convex and open set Int

(
Pg(Kr)

)
and the convex set

⋂
j∈Jr

Int(Pj(Kr)). Thus, those sets are disjoints (see e.g., Boyd and Vanden-

berghe [2004] p. 50): Int
(

Pg(Km)
)
∩ ⋂j∈Jm

Int(Pj(Km)) = ∅ and therefore P̄(Kr) = ∅. This

contradicts Assumption H1 and concludes the proof.

B.3 Proof of Proposition 2

Proof. The ambiguity-adjusted profit generator g ∈ G earns can be written as −(λgεg + 1/N ∑i sig +

CgKg), which we want to prove equals zero.

We focus on expressing 1/N ∑i sig.
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Using (10k), αig = −1/N < 0 such that, with (10b), for all i ∈ N ,

− 1
N

sig = ∑
t
(Htx′igt − γ1

igt + γ2
igt)αig(cigt − pit) + αigγ1

igt Āg − αigγ2
igt Ag

+ ∑
c
(Wgc − γ1

igc + γ2
igc)αig(p1

c − p2
ic) + αigγ1

igcB̄g − αigγ2
igcBg.

Focusing on the time-indexed variables, we have, for all i ∈ N ,

∑
t
(Htx′igt − γ1

igt + γ2
igt)αig(cigt − pit) + ∑

t
αigγ1

igt Āg − αigγ2
igt Ag

= ∑
t

µ′
igtx

′
igt + Htβ

2
igtx

′
igt − Htβ

1
igtx

′
igt + ∑

t
αig(γ

2
igt − γ1

igt)(cigt − pit) + ∑
t

αigγ1
igt Āg − αigγ2

igt Ag

= ∑
t

µ′
igtx

′
igt + Htx′igtβ

2
igt − Htx′igtβ

1
igt + ∑

t
(γ2

igt − γ1
igt)(β2

igt − β1
igt)

= ∑
t

µ′
igtx

′
igt − λg(β1

igt + β2
igt)

= ∑
t

µ′
igtKg − λg ∑

t
(β1

igt + β2
igt),

where the first equality comes from (10g), the second comes from (10l) and (10m), the third

comes from (10c) and (10d), and the last comes from (10a). Following steps similar to those

used with the contract-indexed variables, we have

∑
i

∑
c
(Wgc − γ1

igc + γ2
igc)αig(p1

c − p2
ic) + ∑

i,c
αigγ1

igcB̄g − αigγ2
igcBg

= ∑
i,c

β2
igc[Wgc − γ1

igc + γ2
igc] + ∑

i,c
β1

igc[−Wgc + γ1
igc − γ2

igc]

= ∑
i,c

−λg(β1
igc + β2

igc),

where the first equality derives from (10i), (10n), and (10o) and the second derives from (10e)

and (10f). Aggregating the results,

1
N ∑

i
sig = −∑

i,t
µ′

igtKg + λg

(
∑
i,t
(β1

igt + β2
igt) + ∑

i,c
(β1

igc + β2
igc)

)
= −CgKg − λgεg,

where the first term of the second equality comes from the generator’s rent covering its cap-

ital expenditures (10h) and the second term comes from (10j). This proves the nullity of the

ambiguity-adjusted profit each generator earns.
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C The complementarity formulation of the economy with

ambiguity-averse agents exchanging CfDs
In this section we amend the model we present in Section 2.2 to accommodate CfDs. All produc-

ers who do not benefit from the contract are modeled in the same way as in Section 2.2.1. For

ease of exposition, we assume that only one producer g benefits from the CfD, but this assump-

tion is not constraining in our framework as it can be easily relaxed. Consider, then, producer g,

which is endowed with a CfD of strike S covering a maximum capacity KS
g contracted with the

representative consumer. In realization i, generator g still minimizes its cost, but its generation

is now valued at the strike price, S. Its second-stage problem can hence be written as

lg(Kg, Wg, ξig) = min
xigt≥0

∑
t

Ht(cigt − S)xigt + ∑
c
(p1

c − p2
ic)Wgc (38)

s.t. ∀t ∈ T , xigt ≤ Kg [µigt].

In the first stage, producer g still minimizes its investment costs plus its worst-expected opera-

tional loss. It faces an ambiguous, uncertain parameter ξg which now accounts for a fixed spot

price in the inframarginal rents (we still use notation ξg for uncertain parameters, with no risk

of confusion):

∀i ∈ N , ξig =

 cigt − S

p1
c − p2

ic

 ∈ RT+|C|. (39)

The bounds of the uncertainty set are now such that Āg(S) and Ag(S) are functions of the strike

S and no longer depend on the extreme values of the spot price. Indeed, the CfD, by ensuring a

fixed revenue stream, mitigates ambiguity. On the other hand, bounds B̄g and Bg are unchanged.

The first-stage problem for producer g can then be rewritten as:

inf
Kg≥0

Wg∈R|C|

CgKg + sup
Q∈Bεg(P̂g)

EQ

[
lg

(
Kg, Wg, ξg(K,W )

)]
(40a)

s.t. Kg ≤ KS
g [µ

c f d
g ], (40b)

where the additional constraint limiting installed capacity derives from our assumption that

producer g can not invest in greater capacity than what can be covered by the CfD, i.e. KS
g .
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Lemma 1 still applies to this problem and offers a linear reformulation, as in Section 2.2.1:

inf
Kg,x′igt,γ

1
igt,γ

2
igt,γ

1
igc,γ2

igc≥0
λg,sig,Wgc∈R

CgKg + λgεg +
1
N ∑

i
sig

s.t. Kg ≤ KS
g [µ

c f d
g ]

∀i ∈ N , t ∈ T , x′igt ≤ Kg [µ′
igt]

∀i ∈ N ,

∑t(Htx′igt − γ1
igt + γ2

igt)(cigt − S) + γ1
igt Āg(S)− γ2

igt Ag(S)

+∑c(Wgc − γ1
igc + γ2

igc)(p1
c − p2

ic) + γ1
igcB̄g − γ2

igcBg

≤ sig [αig]

∀i ∈ N , t ∈ T , −λg ≤ Htx′igt − γ1
igt + γ2

igt ≤ λg [β2
igt, β1

igt]

∀c ∈ C, −λg ≤ Wgc − γ1
igc + γ2

igc ≤ λg [β2
igc, β1

igc].

The equivalent KKT conditions of the problem for generator g, who has contracted a CfD at

strike S for capacity KS
g , are then derived as:

∀i ∈ N , t ∈ T , 0 ≤ µ′
igt ⊥ x′igt − Kg ≤ 0 (41a)

∀i ∈ N , 0 ≥ αig ⊥

∑t(Htx′igt − γ1
igt + γ2

igt)(cigt − S) + γ1
igt Āg(S)− γ2

igt Ag(S)

+∑c(Wgc − γ1
igc + γ2

igc)(p1
c − p2

ic) + γ1
igcB̄g − γ2

igcBg − sig

≤ 0

(41b)

∀i ∈ N , t ∈ T , 0 ≥ β1
igt ⊥ Htx′igt − γ1

igt + γ2
igt − λg ≤ 0 (41c)

∀i ∈ N , t ∈ T , 0 ≥ β2
igt ⊥ −Htx′igt + γ1

igt − γ2
igt − λg ≤ 0 (41d)

∀i ∈ N , c ∈ C, 0 ≥ β1
igc ⊥ Wgc − γ1

igc + γ2
igc − λg ≤ 0 (41e)

∀i ∈ N , c ∈ C, 0 ≥ β2
igc ⊥ −Wgc + γ1

igc − γ2
igc − λg ≤ 0 (41f)

0 ≥ µ
c f d
g ⊥ Kg − KS

g ≤ 0 (41g)

∀i ∈ N , t ∈ T , 0 ≤ x′igt ⊥ −µ′
igt − Htβ

2
igt + Htβ

1
igt + αigHt(cigt − S) ≤ 0 (41h)

0 ≤ Kg ⊥ −Cg + ∑
i

∑
t

µ′
igt + µ

c f d
g ≤ 0 (41i)

∀c ∈ C, Wgc ⊥ ∑
i

αig(p1
c − p2

ic) + β1
igc − β2

igc = 0 (41j)

λg ⊥ −εg − ∑
t

∑
i
(β1

igt + β2
igt)− ∑

c
∑

i
(β1

igc + β2
igc) = 0 (41k)

∀i ∈ N , sig ⊥ − 1
N

− αig = 0 (41l)

∀i ∈ N , t ∈ T , 0 ≤ γ1
igt ⊥ β2

igt − β1
igt − αig(cigt − S) + αig Āg(S) ≤ 0 (41m)

∀i ∈ N , t ∈ T , 0 ≤ γ2
igt ⊥ −β2

igt + β1
igt + αig(cigt − S)− αig Ag(S) ≤ 0 (41n)

∀i ∈ N , c ∈ C, 0 ≤ γ1
igc ⊥ β2

igc − β1
igc − αig(p1

c − p2
ic) + αigB̄g ≤ 0 (41o)

∀i ∈ N , c ∈ C, 0 ≤ γ2
igc ⊥ −β2

igc + β1
igc + αig(p1

c − p2
ic)− αigBg ≤ 0. (41p)
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The representative consumer exhibits the same behavior as in Section 2.2.2, except that it

now accounts, in a distributionally robust way, for the settlement payment of the CfD it ex-

changes with producer g. In realization i, the second-stage problem for the consumer is refor-

mulated accordingly as

ld(Wd, ξid) = min
eit≥0

∑
t

Ht(eit − Dit)(PC − pit) + ∑
c

Wdc(p1
c − p2

ic) + ∑
t

Htxigt(S − pit), (42)

where the last term reflects the financial transaction with producer g according to the CfD agree-

ment. Note that the consumer controls neither generator g’s production nor the spot price pit,

so we regard this last term of the objective as an additional ambiguous parameter.

The entire vector of ambiguous parameters for the consumer is then (here again, through a

slight abuse of the notation, we still denote this vector by ξd)

∀i ∈ N , ξid =


PC − pit

S − pit

p1
c − p2

ic

 ∈ R2T+|C|.

We now denote by Ad(S), Ād(S) the bounds of the two first uncertain parameters of ξid. We do

not change the support for the last parameter p1
c − p2

ic.

The first-stage problem for the consumer can be written as in Section 2.2.2:

inf
Wd∈R|C|

sup
Q∈Bεd (P̂d)

EQ

[
ld

(
Wd, ξd(K,W )

)]
. (43)

According to Lemma 1, this problem reduces again to the following linear program:

inf
Wdc,λd,sid∈R

e′it,γ
1
idt,γ

2
idt,γ

1
idc,γ2

idc≥0

λdεd +
1
N ∑

i
sid (44)

∀i ∈ N ,


∑t[Ht(e′it − Dit)− γ1

idt + γ2
idt](PC − pit) + γ1

idt Ād(S)− γ2
idt Ad(S)

+∑t[Htx′igt − γ1
idt + γ2

idt](S − pit) + γ1
idt Ād(S)− γ2

idt Ad(S)

+∑c[Wdc − γ1
idc + γ2

idc](p1
c − p2

ic) + γ1
idcB̄d − γ2

idcBd

≤ sid [αid]

∀i ∈ N , t ∈ T , −λd ≤ Ht(e′it − Dit)− γ1
idt + γ2

idt ≤ λd [β2
idt, β1

idt]

∀i ∈ N , t ∈ T , −λd ≤ Htx′igt − γ1
idt + γ2

idt ≤ λd [β2
idt, β1

idt]

∀i ∈ N , c ∈ C, −λd ≤ Wdc − γ1
idc + γ2

idc ≤ λd [β2
idc, β1

idc],

This linear program is equivalent to the KKT conditions specified in Section 2.2.2, except for
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a modification of (20a):

∀i ∈ N , 0 ≥ αid ⊥


∑t[Ht(e′it − Dit)− γ1

idt + γ2
idt](PC − pit) + γ1

idt Ād(S)− γ2
idt Ad(S)

+∑t[Htx′igt − γ1
idt + γ2

idt](S − pit) + γ1
idt Ād(S)− γ2

idt Ad(S)

+∑c[Wdc − γ1
idc + γ2

idc](p1
c − p2

ic) + γ1
idcB̄d(S)− γ2

idcBd(S)

− sid ≤ 0,

(45)

and for the following new complementarity conditions associated with the consumer’s having

to be distributionally robust with respect to the uncertain CfD payments:7

∀i ∈ N , t ∈ T , 0 ≥ β1
idt ⊥ Htx′igt − γ1

idt + γ2
idt − λd ≤ 0 (46a)

∀i ∈ N , t ∈ T , 0 ≥ β2
idt ⊥ −Htx′igt + γ1

idt − γ2
idt − λd ≤ 0 (46b)

∀i ∈ N , t ∈ T , 0 ≤ γ1
idt ⊥ β2

idt − β1
idt − αid(S − pit) + αid Ād(S) ≤ 0 (46c)

∀i ∈ N , t ∈ T , 0 ≤ γ2
idt ⊥ −β2

idt + β1
idt + αid(S − pit)− αid Ad(S) ≤ 0. (46d)

D An equilibrium formulation of the economy under risk

aversion
We now provide a formulation of our problem when agents are averse to risk but not neces-

sarily to ambiguity. The realizations of the random variables (demand, fuel costs, and prices)

constitute the set of scenarios, which we still denote by i ∈ {1, 2, ..., N} and to which we assign

equal probability 1
N . The rest of the notation remains unchanged; in particular, we still keep the

classical two-stage formalism. As is now standard in the literature, we resort to risk measures

to model market agents’ aversion to risk (Artzner et al. [1999] and Shapiro et al. [2021]). Because

the financial market is never complete, every agent has to value its stochastic profit via its own

risk measure. For ease of exposition, we formulate our problem with the CVaR (Conditional

Value at Risk), which can be expressed linearly as shown in Rockafellar and Uryasev [2000].

We denote by εCVaR
g producers’ levels of risk aversion and by εCVaR

d that of the consumer. The

obtained model is of the complementarity form, which we now present and refer to Ferris and

Philpott [2022], for instance, for all derivation details.

7We draw the reader’s attention to the fact that the decisions the representative consumer takes regarding foreseen
load curtailment (e′) and eventual investment in contracts (Wdc) are unaffected by this payment.
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The KKT conditions for producers are

0 ≥ µigt ⊥ xigt − Kg ≤ 0 (47a)

0 ≤ xigt ⊥ pit − cigt + µigt ≤ 0 (47b)

0 ≤ y∗ig ⊥ η∗
g + γ∗

ig − ∑
c

Wgc p2
ic + ∑

t
HtµigtKg ≤ 0 (47c)

0 ≤ γ∗
ig ⊥ y∗ig −

1
(1 − εCVaR

g )N
≤ 0 (47d)

η∗
g ⊥ ∑

i
y∗ig − 1 = 0 (47e)

0 ≤ Kg ⊥ −Cg − ∑
i

y∗ig ∑
t

Htµigt ≤ 0 (47f)

Wgc ⊥ p1
c − ∑

i
y∗ig p2

ic = 0, (47g)

where y∗ig, i ∈ {1, 2, ..., N} is the risk-adjusted probability associated with producer g. The risk-

adjusted profit agent g earns, RAPg, is:

RAPg = Kg.

(
∑

i
y∗ig ∑

t
Ht(−µigt)− Cg

)
+ ∑

c
Wgc

(
∑

i
y∗ig p2

ic − p1
c

)
.

The KKT conditions of the consumer are

0 ≤ y∗id ⊥ η∗
d + γ∗

id − ∑
c

p2
icWdc − ∑

t
Ht(PC − pit)(Dit − eit) ≤ 0 (48a)

0 ≤ γ∗
id ⊥ y∗id −

1
(1 − εCVaR

d )N
≤ 0 (48b)

η∗ ⊥ ∑
i

y∗id − 1 = 0 (48c)

Wdc ⊥ p1
c − ∑

i
y∗id p2

ic = 0 (48d)

0 ≤ eit ⊥ pit − PC ≤ 0, (48e)

where y∗id, i ∈ {1, 2, ..., N} is the risk-adjusted probability of the consumer. The risk-adjusted

consumer surplus, RACS, is

RACS = ∑
i

y∗id ∑
t

Ht(PC − pit)(Dit − eit) + ∑
c

Wdc

(
∑

i
y∗id p2

ic − p1
c

)
.

Finally, we define risk-adjusted welfare RAW as follows:

RAW = ∑
g∈G

RAPg + RACS. (49)
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