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Abstract 

Urban population growth intensifies the demand for efficient, accessible, sustainable public 
transportation. Traditional modes often lack the flexibility modern commuters seek, leading to 
integrating on-demand services like shared automated vehicles (SAVs) into mobility as a Service 
(MaaS) platform. Despite numerous SAV experiments globally, applying classical public transport 
pricing policies to SAVs within MaaS hinders profitability and delays industrial deployment. While 
dynamic pricing has optimised revenue and resource allocation in industries like airlines and ride-
hailing services, its application in public transportation with SAVs remains underexplored. Dynamic 
pricing strategies must balance varied and sometimes contradictory performance objectives: 
profitability and affordability, reliability, and environmental friendliness. We conduct a systematic 
review to examine how dynamic pricing influences the performance of SAVs in MaaS. The findings 
suggest dynamic pricing offers immense potential for sustainable profitability and operational 
efficiency in public transportation services. However, it also reveals trade-offs between revenue 
maximisation and user affordability, as dynamic pricing may increase costs for low-income users 
during peak periods. Our findings emphasise the need for advanced pricing algorithms that can 
rapidly adapt to changes in customers’ willingness to pay while balancing economic objectives with 
operational and social impacts. 
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1. Introduction 

Urban population growth intensifies the need for efficient, accessible, sustainable public 
transportation. Traditional transit modes often lack the flexibility modern commuters demand, 
prompting cities to integrate on-demand services such as shared autonomous vehicles (SAVs) into 
the Mobility as a Service (MaaS)1 platform. On-demand SAVs can potentially improve public 
transportation services. They offer flexibility and responsiveness that traditional transit systems 
cannot match, allowing cities to reduce congestion, cut operating costs, and significantly enhance 
user experience (Fagnant & Kockelman, 2013). SAVs can quickly adjust their deployment based on 
live data and adapt to fluctuating demand patterns, enabling transport operators to manage their 
fleets more efficiently, optimise resource use, and ensure reliable service for users.  

ULTIMO is a European project dedicated to launching the first economically viable, large-scale, on-
demand autonomous public transport service. However, it faces two significant challenges. First, 

 
1 MaaS is a mobility service that consolidates multiple transportation modes into a user-centric platform, 
streamlining urban travel and improving overall service quality 
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most public transport systems operate at a loss and depend on subsidies that often exceed 50% of 
their total income (EGUM subgroup, 2022). The current situation limits the financial opportunities to 
further extend investment in this technology without putting intense pressure on public budgets. 
Second, political mandates to maintain affordable public transport fares significantly strain 
financing. Rising input costs, such as energy prices and capital expenses, exceed the revenue 
generated by the current fare pricing mechanism, which is a predominantly static pricing strategy. 
Moreover, socially beneficial investments in city centre services and during peak periods further 
increase operating costs. These challenges underscore the need for an innovative pricing strategy 
that balances sustainable profitability with affordability.  

Classical pricing models, such as fixed fares or zone-based tariffs, have proven inadequate in 
addressing the dynamic nature of urban transportation (Zhou et al., 2019). These static pricing 
strategies often result in inefficiencies, as they fail to account for the social costs associated with 
peak demand, congestion, and environmental externalities (Eliasson, 2021). In contrast, dynamic 
pricing offers a more nuanced approach by adjusting fares in real-time based on various factors, 
including time of day, route congestion, and user demand. This responsive pricing mechanism aligns 
costs with actual market conditions and helps internalise transportation's social costs, such as 
traffic congestion and emissions, thereby contributing to economic and environmental 
sustainability (Qiu et al., 2018; Turan et al., 2020). 

Moreover, as cities worldwide contend with the twin challenges of rapid urbanisation and climate 
change, adopting a dynamic pricing strategy for public transport services could be a helpful strategy 
for promoting sustainable urban mobility. Dynamic pricing can help mitigate congestion and lower 
greenhouse gas emissions by incentivising off-peak travel, reducing unnecessary vehicle 
circulation, and enhancing the overall efficiency of transit networks, thereby contributing to a 
cleaner, more resilient urban environment. 

Despite its successful application in industries like airlines and private ride-hailing services, 
dynamic pricing remains underexplored in public transportation, particularly for SAVs. This gap in 
real-world application and research presents a unique opportunity to investigate whether dynamic 
pricing can bridge the revenue and efficiency gap in classical public transport fare pricing 
mechanisms and foster the development of sustainable urban transit systems.  

This systematic review addresses these issues by examining how dynamic pricing influences the 
performance of on-demand SAV services and its implications for public transportation services. 
Specifically, we explore the potential of dynamic pricing to ensure sustainable profitability, optimise 
fleet utilisation, reduce passenger wait times, and lower operating costs while considering the 
affordability concerns for price-sensitive users. Our review critically evaluates a wide range of 
studies—from empirical analyses using real-world data to simulation-based models and theoretical 
frameworks—to comprehensively understand the potential benefits and challenges associated with 
implementing dynamic pricing in public transport services such as SAVs. 

The question guiding this review is: What are the benefits of adopting a dynamic pricing strategy for 
on-demand SAVs within urban public transportation systems? Our review reveals that dynamic 
pricing offers immense potential for increasing revenue and operational efficiency in public 
transportation services. Specifically, our review shows that dynamic pricing can improve the 
performance of SAVs by: 
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• Enhancing Economic Viability: Dynamic pricing maximises revenue generation and supports 
cost-effective operations by adjusting fares to reflect actual demand in real-time. 

• Optimising Fleet Operations: Real-time fare adjustments enable more efficient vehicle 
deployment, reduce idle times, and streamline resource allocation, improving overall 
service reliability. 

• Promoting Environmental Sustainability: Dynamic pricing contributes to lower emissions 
and better energy efficiency by smoothing demand and reducing congestion. 

• User accessibility: However, dynamic pricing could also pose affordability challenges as 
fluctuating fares may disproportionately burden low-income users with rigid travel 
schedules during peak periods. 

The remainder of this review is organised as follows: Section 2 outlines the systematic review 
methodology, detailing the search strategies, inclusion criteria, and data extraction processes that 
underpin our analysis. Section 3 presents a synthesis of the findings, organised around four thematic 
areas: operational efficiency, economic viability, user accessibility, and environmental impact. 
Section 4 discusses the modelling techniques researchers employ to navigate the complexities of 
dynamic pricing and demand prediction. Finally, Section 5 concludes the review by discussing the 
implications of our findings for policy and practice. 

2. Methodology 

Our systematic review adheres to the PRISMA 2020 guidelines (Page et al., 2021) and incorporates 
elements from other established frameworks to ensure a comprehensive and rigorous process. 
Below, we detail our search strategies, inclusion criteria, data extraction, and synthesis methods. 

2.1 Search Strategies 

We developed a robust search strategy to capture various studies on dynamic pricing in urban public 
transportation. We searched key academic databases, including Web of Science, SpringerLink, 
Scopus, ScienceDirect, Mendeley, JSTOR, and EBSCO, selected for their relevance and access to 
high-quality, peer-reviewed articles. Our search combined keywords and phrases such as “dynamic 
pricing,” “surge pricing,” “on-demand shared autonomous vehicles, “ride-hailing”” and “public 
transportation” to identify relevant literature. 

We also included grey literature such as conference papers, government and industry reports, and 
working papers to broaden our scope. This approach ensured that diverse perspectives and 
emerging research were incorporated. Additionally, we employed citation mapping tools like LitMap 
and VOSviewer (van Eck & Waltman, 2010) to visualise co-citation relationships and keyword co-
occurrence. These tools helped us uncover influential works that standard keyword searches might 
miss. In total, our search strategy yielded 183 documents. 

2.2 Inclusion Criteria 

We established strict inclusion criteria to focus on high-quality studies directly addressing the 
impacts of dynamic pricing on the economic viability, operational efficiency, user accessibility, and 
environmental impact of SAV platforms in urban public transportation. We selected studies that 
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provided empirical, simulation-based, and theoretical insights into dynamic pricing mechanisms 
and their outcomes. 

Our dataset encompasses a diverse range of sources. For example, we included 19 papers from the 
IEEE International Conference on Intelligent Transportation Systems (ITSC). Transportation 
Research Part C constituted 15 papers, reflecting their leadership in intelligent and autonomous 
transportation systems research. Transportation Research Parts A and B include 9 and 11 papers, 
respectively, highlighting their importance in transportation systems and infrastructure planning. 
Additionally, six working papers from leading institutions such as MIT, UCLA, and Carnegie Mellon 
University offered valuable insights, while journals categorised as “Other” contributed 14 papers. 
These include interdisciplinary contributions from journals like Management Science and 
Manufacturing & Service Operations Management, further enriching our dataset. Here, we observe 
that the most important publications are characterised by interdisciplinarity and by the journal 
dedicated to transportation, so we think the performance of dynamic pricing in public transportation 
will be useful to all stakeholders. 

The review focused on studies published within the last 15 years (i.e., 2009 - 2024) to ensure that the 
findings reflect the most recent developments in dynamic pricing and urban transportation systems. 
Only studies published in English were included in the review to maintain consistency in the analysis.  

Temporal data analysis reveals a steady growth in research interest over time. The number of 
publications increased consistently from 2012 to 2024, peaking in 2020 with 21 publications—a 
particularly active year for research on transportation and dynamic pricing. Since 2016, the number 
of publications has risen, indicating that dynamic pricing and on-demand transportation have 
become central topics in academic and technical discussions. The field remains vibrant with strong 
activity in subsequent years: 15 publications in 2021, 18 in 2022, and 9 in 2024. 

From Figure 1, we can already confirm the interest in questioning the interest of a dynamic pricing 
strategy for shared mobility services. Indeed, shared mobility services are often used for short and 
occasional trips. Users are, therefore, sensitive to price variations. On the supply side, dynamic 
pricing allows fares to be adjusted in real-time, allowing operators to maximise their revenue and 
optimise fleet use. Finally, in the share-mobility market, companies must adapt quickly to 
fluctuations in demand and the strategies of their competitors. Dynamic pricing offers them that 
flexibility. For public transport operators, such flexibility could be particularly helpful in bridging the 
revenue gap. 

 

Figure 1. Keyword co-occurrence 
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Figure 1 shows the keyword co-occurrence. Here, keywords are represented as nodes, and their 
proximity represents their co-occurrence strength. This figure shows dynamic pricing has enormous 
potential for on-demand shared mobility services with autonomous vehicles. 

2.3 Data Extraction and Synthesis of Findings 

We adopted the European Commission Expert Group on Urban Mobility’s (EGUM) definition, which 
describes efficient public transport as delivering reliable, affordable, environmentally sustainable, 
and inclusive services. Guided by this definition, we conceptualised public transport performance 
through four dimensions: economic viability, operational efficiency, user accessibility, and 
environmental sustainability. Our data extraction and synthesis processes aligned with these key 
performance areas. To capture diverse analytical perspectives and assess the robustness of 
findings on dynamic pricing, we classified the literature into three methodological categories: 
empirical studies, simulation-based studies, and theoretical models. Specifically, we reviewed 52 
empirical studies that use real-world pricing data to provide direct evidence of financial outcomes 
such as revenue generation, profitability, and cost-effectiveness, 30 simulation-based studies that 
model hypothetical scenarios, and 31 theoretical studies that apply mathematical and economic 
theories to explore dynamic pricing mechanisms. This balanced representation offers deeper 
insights into the consistency and reliability of the findings across different analytical approaches. 
 
We organised the literature synthesis and findings across our four thematic areas as follows: 

1. Economic Viability: Examining the financial outcomes of dynamic pricing, specifically its 
effects on revenue generation, profitability, and cost-effectiveness. Metrics analysed 
include revenue levels, profitability ratios, ROI, and long-term financial stability. 

2. Operational Efficiency: Evaluating the impacts of dynamic pricing on fleet performance, 
resource allocation efficiency, passenger wait times, and service reliability. This includes 
assessing how effectively dynamic pricing reduces vehicle downtime and optimises routing. 

3. User Accessibility: Assessing how dynamic pricing affects affordability and equity, 
particularly for price-sensitive and disadvantaged user groups. We explored whether 
dynamic pricing enhances or restricts equitable service access. 

4. Environmental Sustainability: Analysing the influence of dynamic pricing on urban 
environmental outcomes, specifically emission reductions, improved energy efficiency, and 
decreased traffic congestion. 

Structuring our literature synthesis around these themes enables us to comprehensively assess 
dynamic pricing’s potential benefits and challenges for public transportation systems. 
 
Figure 2 illustrates the distribution and interconnections of high-impact studies on dynamic pricing. 
Each node represents a study, with its size corresponding to the number of citations and its position 
indicating publication recency (horizontal axis) and citation frequency (vertical axis). Nodes with 
multiple colours show studies evaluating several performance dimensions simultaneously. The 
figure demonstrates that recent studies increasingly integrate multiple performance dimensions 
compared to earlier research. This observation supports our argument that assessing dynamic 
pricing's impact on SAVs within public transportation should adopt a comprehensive approach.  
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Figure 2: A map of high-impact articles illustrating how key studies interconnect through shared references.  

3. Analysis and Discussion 

An efficient public transport system must be reliable, affordable, sustainable, and accessible to 
meet urban populations’ diverse needs over the long term (EGUM Subgroup, 2022). In this section, 
we examine how dynamic pricing shapes these key attributes and either enhances or hinders the 
performance of shared autonomous vehicles (SAVs) within Mobility-as-a-Service (MaaS) 
frameworks with autonomous vehicles.   

3.1 Economic Viability 

Economic viability is essential for the sustainability of public transport systems. It means generating 
enough revenue to cover operational costs while keeping services affordable and high quality. The 
literature shows that dynamic pricing improves revenue generation and reduces costs for urban 
transportation systems. 

Dynamic pricing has shown significant potential for increasing profitability in shared vehicle systems 
by optimising vehicle allocation and aligning supply with fluctuating demand. Müller et al. (2023) 
propose a customer-centric dynamic pricing approach that adjusts fares based on the customer’s 
location, walking distance to available vehicles, and anticipated demand. This method led to an 8% 
increase in profits compared to conventional pricing strategies. In another study, Müller et al. 
(2023b) developed a dynamic pricing approach using idle time data to optimise vehicle usage. By 
integrating historical idle time data and applying online optimisation, this technique resulted in an 
11% improvement in operational performance and profit over existing methods.  

Researchers like Bai et al. (2018), Chen et al. (2017), Qiu et al. (2018), Xu et al. (2022), and Yan et al. 
(2020) also show that adjusting fares in real-time to match demand fluctuations improves 
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profitability. Operators capture higher willingness to pay during peak times and lower fares during 
off-peak hours, ensuring consistent revenue and balancing supply with demand. Turan et al. (2020) 
noted that static pricing models often untapped potential revenue during peak periods when 
transport operators could take advantage of commuters’ increased willingness to pay to charge 
higher prices without significantly reducing the demand for the service. By contrast, dynamic pricing 
enables operators to respond swiftly to market conditions, optimising fare levels to enhance 
profitability. For example, during major events or peak commuting hours, fare adjustments can 
capitalise on the surge in demand, thereby increasing overall revenue without compromising service 
accessibility. 

Karamanis et al. (2018) introduced a utility-based model for autonomous ride-sourcing markets that 
improves revenue and maintains service quality. Abkarian & Mahmassani (2023) and Wang & Xie 
(2021) show that applying machine learning techniques to dynamic price modelling predicts demand 
spikes and adjusts fares in advance, thus optimising revenue and preserving service standards.  

Public sector transport authorities face the challenge of balancing revenue maximisation with user 
affordability. Gómez-Lobo et al. (2022) warn that higher fares may drive low-income users toward 
public transportation. However, in the case of public transport, higher fares could drive users 
towards private car usage, undermining urban city authorities’ goal of promoting and increasing their 
share of public transport usage. Therefore, dynamic pricing must include safeguards such as fare 
caps during peak periods and discounts during off-peak times to keep transportation accessible (Al-
Kanj et al., 2020b). Understanding demand elasticity (Krueger et al., 2023) helps these authorities 
adjust pricing without compromising reliability or equity. 

Studies also reveal that dynamic pricing can enhance social welfare. Sayarshad & Oliver Gao (2018) 
report a 37% improvement in social welfare compared to flat rates. Karamanis et al. (2021) show that 
combinatorial double auction models boost operator earnings and social welfare through efficient 
ride-matching. Castillo (2018) and Cohen et al. (2016) further show that dynamic pricing increases 
profitability and delivers significant consumer surplus. Cohen et al. (2016) analysed nearly 50 million 
ride requests from Uber across four major U.S. cities and found that dynamic pricing created a 
consumer surplus estimated at $2.9 billion in 2015. For every dollar spent, consumers received 
about $1.60 in additional value. These findings indicate that dynamic pricing enhances operator 
revenue and provides better value to consumers.  

Dynamic pricing offers a dual advantage for public sector SAVs: it increases revenue and improves 
user value, supporting broader objectives like increased public transport usage and reduced 
reliance on private vehicles. However, operators must implement it thoughtfully. Overly aggressive 
pricing risks alienating price-sensitive users; therefore, integrating targeted discounts and 
personalised incentives helps maintain financial health while ensuring social equity.  

While the literature extensively documents revenue increases and improved profitability from 
dynamic pricing, none of the studies thoroughly examine key financial metrics such as return on 
investment (ROI) and cost-benefit ratios. This gap is significant because understanding these 
metrics is essential for assessing whether dynamic pricing can provide a robust, sustainable 
financial model for public transport operators, especially when subsidies are minimised or 
eliminated. Future research should integrate these metrics to offer a more holistic evaluation of 
dynamic pricing’s impact on economic viability. 
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Also, some studies concentrate solely on economic metrics, such as revenue generation, 
profitability, and cost-effectiveness, while others combine economic with operational outcomes. 
However, most research does not extend its analysis to include other performance dimensions—
user accessibility or environmental sustainability. Integrating these additional dimensions is 
important because financial performance alone does not guarantee long-term sustainability; 
understanding how revenue interacts with operational constraints and societal impacts offers a 
more comprehensive evaluation of dynamic pricing strategies. 

3.2 Operational Efficiency 

Operational efficiency is a critical performance metric that ensures public transport fleets deliver 
reliable, timely services. Within MaaS frameworks, many studies consider dynamic pricing as a key 
strategy to enhance fleet utilisation, manage congestion, and boost service reliability. 
 
The literature shows that dynamic pricing allows transport operators to align vehicle deployment 
with real-time demand, ensuring SAVs are available where and when needed. Saharan et al. (2020) 
show that real-time fare adjustments keep vehicles in constant use, reducing idle time and cutting 
costs. Hörl et al. (2021) found that dynamic pricing in Zurich’s automated taxi system cut idle times 
and shortened passenger wait times. Sun et al. (2020) confirm that even distribution of vehicle 
deployment throughout the day minimises underutilisation and reduces the need for extra vehicles 
during demand spikes. Banerjee et al. (2015) further demonstrate that dynamic pricing balances 
supply and demand by incentivising efficient passenger behaviour and ensuring optimal vehicle 
allocation. 
 
Further research indicates that dynamic pricing reduces wait times during peak periods and 
enhances service reliability. Studies by Bischoff & Maciejewski (2016), Simoni et al. (2019), 
Neijmeijer et al. (2020), Karamanis et al. (2022), and others show that aligning vehicle deployment 
with demand hotspots cuts wait times by over 50% and reduces the need for manual repositioning. 
Bimpikis et al. (2019) highlight how spatial pricing, a form of dynamic pricing, prevents vehicle 
clustering in high-demand areas, ensuring coverage in underserved zones. Li & Huo (2019) illustrate 
that balanced fare levels and efficient routing lower fuel and maintenance costs, further enhancing 
profitability. 
Unlike private ride-sourcing services that use surge pricing to attract more drivers (Castillo, 2018; K. 
Chen & Sheldon, 2016; Garg & Nazerzadeh, 2021a), public operators can use dynamic pricing to 
manage passenger demand directly. Operators can leverage dynamic pricing to balance supply and 
demand without creating additional incentives for drivers by incentivising off-peak travel or 
alternative routes. 
 
Dynamic pricing also helps manage congestion in densely populated areas. Hadas et al. (2023) 
developed models based on vehicle crowdedness that reduce dwell times and enhance reliability. 
Tirachini et al. (2014) and Fournier et al. (2023) find that fare adjustments distribute passenger loads 
evenly, preventing vehicle clustering and reducing operational costs. Wei et al. (2020), Xu et al. 
(2022b), and Xu et al. (2024) show that dynamic pricing across multimodal networks and mixed 
markets improves traffic flow and matching efficiency. 
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Machine learning and artificial intelligence further boost dynamic pricing’s effectiveness by 
processing real-time data to predict demand and optimise fleet deployment. Battifarano & Qian 
(2019), Müller et al. (2023), and Zhang et al. (2024) illustrate how these technologies adapt pricing 
models to fluctuating market conditions and evolving user behaviours. However, overreliance on 
dynamic pricing without integrated operational strategies may lead to inefficiencies. Pfrommer et al. 
(2014) found that while dynamic pricing reduced manual redistribution in London’s Cycle Hire 
scheme, it sometimes led to vehicle clustering in a single zone. Hu et al. (2024) argue that algorithmic 
models may misallocate resources if existing models inaccurately predict the demand. Transport 
authorities must integrate dynamic pricing with robust demand forecasting, proactive vehicle 
repositioning, and comprehensive fleet management. This integration ensures balanced vehicle 
distribution, prevents misallocation, and enhances system efficiency.  

These studies demonstrate that dynamic pricing improves fleet utilisation, reduces idle times, and 
shortens passenger wait times. Nevertheless, many researchers address these metrics in isolation 
or only in combination with economic factors. A gap exists in assessing how improvements in 
operational efficiency affect, and are affected by, user accessibility and environmental outcomes. A 
multidimensional approach would provide a holistic view of service performance, ensuring that 
gains in efficiency do not compromise other critical aspects of public transportation. 

3.3 User Accessibility 

User accessibility refers to the degree to which public transportation services remain affordable and 
reachable for all user groups. In this context, if dynamic pricing drives fares too high during peak 
periods, it undermines accessibility by limiting the ability of low-income or vulnerable users to afford 
and use the service. Research by Hu et al. (2021) and El-Geneidy et al. (2016) shows that peak-hour 
fare surges can restrict access for financially vulnerable individuals, deepening social inequalities in 
public transportation. 

Low-income commuters with rigid work schedules often lack the flexibility to shift travel times. In 
Singapore, off-peak discounts attract more users, but without similar incentives during peak hours, 
those with rigid schedules face higher costs Adnan et al. (2020). Hadas et al. (2023) found that price 
surges in Israel similarly price out low-income users, worsening existing socioeconomic disparities. 
Lee et al. (2023) further emphasise that rigid work schedules leave economically disadvantaged 
groups dependent on costly peak-time services, adding to their financial strain and limiting 
affordable mobility. 

Studies on consumer social learning reveal that as users grow more sensitive to pricing, their travel 
habits change, potentially leading to inequitable access Zhang et al. (2024b). Haywood & Koning 
(2015), Sun et al. (2020b), and Giorgione et al. (2020) note that while dynamic pricing can effectively 
manage demand, it may also raise affordability issues for price-sensitive groups. Pandit et al. (2019) 
advise cautious use of dynamic pricing in markets with highly price-sensitive customers to address 
this concern. Fournier et al. (2023b) propose a dynamic travel futures market, allowing travellers to 
lock in fares in advance, thus reducing cost uncertainty. Though this approach is constructive in the 
airline industry, its application in shared mobility services, which are often used for short and 
occasional trips, could be pretty challenging. Perhaps offering lower-cost routes and off-peak travel 
incentives can also help mitigate adverse impacts on vulnerable populations. 
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Recent advancements aim to enhance inclusivity by integrating policies that prioritise low-income 
users. Samundiswary et al. (2024) introduced models like Local Serve, which tailors prices based on 
users’ financial capabilities and local economic conditions, reducing disparities and improving 
access. Similarly, Lei & Ukkusuri (2023) and Zheng & Geroliminis (2020) explored machine learning 
algorithms that personalise pricing based on income, travel frequency, and time of day. These 
strategies balance equity with profitability, making shared mobility services more inclusive. 

Implementing moderate pricing and income-based adjustments, as suggested by Zhong et al. (2023) 
and Karamanis et al. (2022), can prevent the exclusion of low-income users while maintaining 
service levels. By combining these approaches, public transport operators can reap the benefits of 
dynamic pricing, such as reduced congestion and optimised fleet utilisation, without compromising 
accessibility and equity.  

Here, too, we observe that the literature discussed under user accessibility typically focuses on fare 
affordability and the impact of dynamic pricing on vulnerable populations. However, few studies 
consider how these affordability issues interact with broader performance metrics, such as 
economic viability or operational efficiency. Evaluating user accessibility alongside other 
dimensions is essential to ensure that efforts to boost revenue and efficiency do not inadvertently 
marginalise low-income or price-sensitive users, thereby preserving equitable access to public 
transport. 

3.4 Environmental Sustainability 

Dynamic pricing offers significant environmental benefits for publicly owned SAVs within MaaS 
platforms. Shafiei et al. (2024) and Shatanawi et al. (2022) show that dynamic road pricing can 
reduce urban congestion by adjusting fares in real-time according to traffic conditions. In 
Melbourne, such pricing strategies decreased congestion and emissions, while simulations in 
Budapest revealed reduced vehicle miles travelled (VMT) during peak hours, improving air quality. 
These studies suggest that dynamic pricing can help public transport operators manage traffic flow 
more efficiently and minimise the environmental footprint of urban transportation networks. 

Dynamic pricing lowers emissions and optimises road infrastructure usage. Cashore et al. (2022) 
developed a stochastic pricing model for ride-sharing that maintains market equilibrium and 
reduces unnecessary vehicle circulation during off-peak hours. Sun et al. (2020) further argue that 
balancing supply and demand through dynamic pricing minimises idle times and empty runs, 
thereby reducing fuel consumption and emissions. Additionally, Zheng & Geroliminis (2016) 
emphasise that real-time price adjustments in multimodal transport systems encourage users to 
opt for sustainable modes such as public transit or cycling, further lowering individual carbon 
footprints and enhancing overall network efficiency.  

However, dynamic pricing also presents challenges. Zuniga-Garcia et al. (2020) warn that lower off-
peak fares might trigger increased trip frequency, potentially offsetting the environmental gains. To 
counteract this, PTOs should implement demand management measures such as minimum fare 
thresholds and complementary sustainability strategies to ensure that dynamic pricing contributes 
to environmental goals.  

Several studies infer that dynamic pricing can reduce emissions and congestion through economic 
and operational benefits. Nonetheless, most research does not directly measure environmental 
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outcomes or examine how they correlate with economic and service performance. This siloed 
approach limits our understanding of how dynamic pricing affects public transportation across 
multiple dimensions. A multidimensional analysis that combines environmental metrics with 
financial and operational data is crucial for understanding the full impact of dynamic pricing on 
sustainable urban mobility. 

 
3.5 SWOT Analysis 

To synthesise the key insights from the literature, we present a SWOT analysis that evaluates the 
strengths, weaknesses, opportunities, and threats of implementing dynamic pricing in publicly 
owned SAVs within MaaS platforms. This framework examines internal capabilities and external 
factors that affect the performance of dynamic pricing strategies. By understanding these elements, 
public transport operators can develop strategies that leverage the benefits of dynamic pricing while 
mitigating its challenges. 

Table 1 details the SWOT analysis, summarising current research and offering actionable insights for 
public transport operators. 

Table 1. SWOT analysis of dynamic pricing in transportation 

Strengths: Weaknesses: 
Revenue Optimisation:  
Dynamic pricing adjusts fares in real-time 
based on demand, capturing peak-period 
revenue while ensuring steady income during 
off-peak hours. This flexibility allows operators 
to respond quickly to market conditions and 
maximise profitability. 
 
Improved Fleet Utilisation:  
Dynamic pricing ensures that SAVs are 
available where and when needed most, 
reducing idle times and enhancing overall fleet 
efficiency. Efficient vehicle deployment 
minimises operational costs and improves 
service coverage. 
 
Enhanced Service Reliability:  
Dynamic pricing reduces passenger wait times 
and improves overall service by incentivising 
drivers to operate during high-demand periods. 
Reliable service boosts customer satisfaction 
and fosters higher ridership and trust in the 
system. 
 

User Affordability Concerns: 
Higher fares during peak periods can make SAV 
services less accessible to low-income users, 
undermining social equity. This risk 
necessitates the development of inclusive 
pricing models that balance profitability with 
affordability. 
 
Price Volatility: 
Rapid fluctuations in pricing may create 
uncertainty for both users and operators. This 
volatility can lead to dissatisfaction, reduced 
trust in the platform, and potential market 
instability. 
 
Dependency on Accurate Data: 
The success of dynamic pricing relies on the 
continuous collection and analysis of real-time 
data. Inaccurate forecasting or data 
discrepancies can lead to mispricing, 
inefficient fleet management, and diminished 
service quality. 

Opportunities: Threats: 
Integration with Sustainable Mobility: Regulatory Challenges: 
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Dynamic pricing can promote the use of shared 
and electric vehicles, contributing to 
environmental sustainability goals. By 
encouraging shifts toward greener modes of 
transport, operators can reduce emissions and 
support broader climate initiatives. 
 
Expansion into New Markets: 
The flexibility of dynamic pricing allows 
transport operators to adapt their models to 
diverse urban environments with varying 
demand patterns. This adaptability creates 
opportunities for expansion into new markets 
and enhances the scalability of MaaS 
platforms. 
 
Use of Advanced Algorithms: 
Advances in AI and machine learning offer the 
potential to refine dynamic pricing models. 
Personalised pricing based on user profiles, 
real-time demand, and predictive analytics can 
improve efficiency and customer satisfaction. 
These technologies can help overcome data 
challenges and further balance equity with 
profitability. 
 

Some regions impose surge pricing restrictions, 
limiting dynamic pricing models’ flexibility. 
Such regulations may reduce the ability to 
respond dynamically to market conditions and 
affect overall revenue. 
 
Competition with Private car usage: 
Excessively high dynamic fares may drive users 
toward alternatives such as private car usage. 
This shift could reduce the market share for 
ride-hailing services and impact the overall 
effectiveness of SAV networks.  
 
Potential Environmental Backlash: 
While dynamic pricing aims to reduce 
congestion and emissions, lower off-peak fares 
might inadvertently increase trip frequency. 
This surge in travel demand, especially in high-
emission areas, could negate environmental 
benefits and increase overall energy 
consumption. 

 

This SWOT analysis provides a structured overview of the internal strengths and weaknesses and 
external opportunities and threats associated with implementing dynamic pricing for publicly owned 
SAVs within MaaS platforms. Dynamic pricing offers immense potential for PTAs and PTOs to create 
more efficient and responsive transportation networks. Operators can leverage it to increase 
revenue, improve fleet utilisation, enhance service reliability, and ensure long-term sustainable 
profitability. However, it is critical to integrate advanced technologies and proactive demand 
management strategies to address affordability concerns, price volatility, and regulatory 
constraints. A balanced approach that aligns economic objectives with social and environmental 
goals will ultimately enable sustainable and inclusive urban mobility. 

4.0 Modelling Techniques for Dynamic Pricing 

Implementing dynamic pricing in publicly owned SAVs within MaaS platforms depends on modelling 
techniques that accurately forecast demand and optimise fare prices. Researchers employ various 
methods to navigate the complexities of dynamic pricing and demand prediction. This review 
categorises these approaches into three primary groups: Optimisation Algorithms, Machine 
Learning and Artificial Intelligence, and Statistical Analysis and Forecasting, as illustrated in the 
accompanying figure. 
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Figure 1: Categories of dynamic pricing methods 

4.1 Optimisation Algorithms 

Optimisation algorithms calculate optimal pricing outcomes within defined constraints, such as 
maximising revenue or reducing congestion. These models integrate multiple factors—including 
customer demand, competitor pricing, and cost structures—to adjust fares dynamically. For 
example, linear rolling horizon optimisation (LRHO) and dynamic system optimum (DSO) models, 
which use macroscopic fundamental diagrams (MFDs), compute pricing strategies that effectively 
manage congestion (Chen et al., 2016b). These algorithms can allow public transport operators to 
implement strategies that improve traffic flow and reduce bottlenecks. However, real-world 
variables such as sudden weather changes, traffic incidents, or unplanned events can challenge 
these models. Enhancing their responsiveness through adaptive elements is essential for 
addressing such unforeseen disruptions. 

4.2 Machine Learning and Artificial Intelligence 

Machine learning (ML) and artificial intelligence (AI) techniques continuously learn from new data to 
refine pricing strategies based on market conditions, customer behaviour, and external factors. 
Reinforcement learning (RL) and multi-agent deep reinforcement learning (MADRL) models, 
developed by Abkarian and Mahmassani (2023) and Turan et al. (2020), optimise both pricing and 
vehicle dispatching in competitive MaaS markets. These models improve demand forecasting 
accuracy, identify real-time optimal pricing, and tailor fares to specific customer segments, thereby 
enhancing inclusivity and efficiency. Ke et al. (2017) demonstrated that deep learning effectively 
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addresses complex spatiotemporal forecasting challenges for short-term passenger demand, while 
Genser & Kouvelas (2022) employed multi-layer neural networks (MLNs) to predict pricing functions 
across multi-region urban networks. Although these AI-driven models offer great potential, they 
require meticulous data management, clear model interpretability, and careful ethical 
considerations. 

4.3 Statistical Analysis and Forecasting 

Statistical analysis and forecasting methods rely on historical data to project future trends in 
demand, price sensitivity, and market dynamics. Techniques such as time series forecasts and 
multinomial logit mode choice models (Chen et al., 2016) help researchers assess the market 
potential of SAV fleets. These models simulate various dynamic pricing strategies within agent-
based frameworks, evaluating their impact on mode share, service quality, and operational 
performance. While statistical methods offer valuable insights, they often struggle in rapidly shifting 
environments, as historical trends may not predict sudden demand spikes. Combining these 
traditional approaches with real-time data and adaptive algorithms can enhance predictive 
capabilities and responsiveness. 

Developing a dynamic pricing model for SAVs requires an approach or a model that can adapt to 
changing conditions in real-time, handle complex interactions between variables, and predict prices 
that balance demand and supply efficiently. Pricing algorithms should be able to set fares based on 
intricate demand functions that vary in sensitivity (Abkarian & Mahmassani, 2023). Furthermore, 
these algorithms should have the ability to identify non-stationary patterns—meaning, when the true 
value of actions changes over time, such as due to changes in customers’ willingness to pay, and 
adjust their pricing strategies based on what they have learned from past decisions (Sutton & Barto, 
2017). No single “best” technique exists, as the optimal choice depends on the specific 
characteristics of the service, the data available, and the goals of the pricing strategy. However, 
reinforcement learning stands out for its ability to adjust pricing dynamically by learning from past 
outcomes, making it well-suited for uncertain and complex market conditions.  

Table 2 outlines the various methods used in the literature to compute dynamic prices. This table 
aligns with the modelling techniques discussed earlier and summarises each method’s core 
features, key studies, strengths, and challenges. 

Table 2: Price and demand modelling methods 

Category Dynamic Pricing 
Method Used 

Key Studies Core Features Strengths Challenges 

Machine 
Learning and 
AI 

Reinforcement 
Learning (Deep 
Q-Networks & 
Soft Actor-Critic) 

Kastius & 
Schlosser 
(2022); Gao et 
al. (2024); Sun 
et al. (2024); 
Abkarian & 
Mahmassani 
(2023); Turan 
et al. (2020) 

Uses 
reinforcement 
learning 
algorithms to 
adjust prices 
dynamically by 
learning from 
real-time 
interactions and 
outcomes. 

High adaptability; 
enables 
personalised 
pricing; supports 
real-time 
decision-making. 

Requires extensive 
training data, is 
computationally 
intensive, and has 
challenges with 
model 
interpretability. 
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Category 
Dynamic Pricing 

Method Used 
Key Studies Core Features Strengths Challenges 

 
Multi-Layer 
Neural (MLN) 
Network Model 

Genser & 
Kouvelas 
(2022) 

Utilises deep 
neural networks 
with multiple 
layers to capture 
complex spatial 
and temporal 
patterns in 
demand and 
pricing 
functions. 

Effectively 
models non-
linear 
relationships; 
high prediction 
accuracy. 

Demands high-
quality data; risk of 
overfitting; increased 
computational 
complexity. 

 
Agent-Based 
Simulation 
(MATSim, PTV 
Visum) 

Hörl et al. 
(2021); Shafiei 
et al. (2024); 
Simoni et al. 
(2019); 
Bischoff et al. 
(2016); Ji et al. 
(2024); 
Antonio & 
Maria-Dolores 
(2022) 

Simulates the 
interactions of 
individual agents 
(e.g., 
passengers, 
vehicles) within 
a transportation 
network using 
simulation 
software to 
inform pricing 
strategies. 

Captures 
emergent 
behaviours and 
system 
interactions; 
useful for 
scenario analysis 
and policy 
evaluation. 

Computationally 
intensive; requires 
careful calibration 
and validation; 
complex 
implementation. 

Optimisation 
Algorithm 

Queueing-Based 
Analytical Model 

Bai et al. 
(2018); 
Riquelme et al. 
(2015); Pandit 
et al. (2019) 

Employs 
queueing theory 
to analyse 
system 
dynamics such 
as waiting times 
and service 
levels, 
optimising 
pricing to 
manage demand 
flow. 

Based on solid 
analytical 
foundations, 
effective for 
service-level 
optimisation. 

Simplified 
assumptions may not 
capture all real-world 
complexities and 
limited flexibility for 
sudden disruptions. 

 

Dynamic 
Programming – 
Approximate 
(ADP), 
Stochastic 
(SDC), & Optimal 
Control Theory 

Chen et al. 
(2020); Qiu et 
al. (2018); 
Wang & Xie 
(2021); Muller 
et al. (2023); 
Al-Kanj et al. 
(2020); Garg et 
al. (2021); Qian 
& Ukkusuri 
(2017) 

Uses dynamic 
programming 
and control 
theory 
techniques to 
determine 
optimal pricing 
trajectories over 
time, 
incorporating 
stochastic 
elements and 
constraints. 

Captures 
temporal 
dynamics and 
uncertainty; 
robust for long-
term 
optimisation. 

High computational 
complexity; sensitive 
to parameter 
estimation; requires 
extensive and 
accurate data. 
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Category 
Dynamic Pricing 

Method Used 
Key Studies Core Features Strengths Challenges 

 

Mixed-Logit 
Choice Model 
with Latent 
Class Analysis / 
Multinomial 
Logit Mode 
Choice Model 

Nazari et al. 
(2018); Chen 
et al. (2016) 

Statistical 
models that 
estimate 
consumer 
choice and price 
sensitivity by 
segmenting the 
market into 
latent classes. 

Provides deep 
insights into 
consumer 
behaviour and 
market 
segmentation; 
supports tailored 
pricing 
strategies. 

Dependent on the 
quality of 
survey/historical 
data; may 
oversimplify complex 
consumer 
behaviours. 

 
Combinatorial 
Auction-Based 
Simulation 

Karamanis et 
al. (2021) 

Implements 
auction-based 
mechanisms to 
allocate rides 
and determine 
prices through 
competitive 
bidding 
processes 
among service 
providers. 

Facilitates 
efficient 
matching of 
supply and 
demand; 
promotes 
competitive and 
fair pricing. 

Implementation 
complexity; high 
computational 
demands; may 
require sophisticated 
software solutions. 

 

Non-Linear 
Minimum Cost 
Flow Problem 
(Convex 
Optimization) 

Karamanis et 
al. (2022) 

Models the 
dynamic pricing 
problem as a 
network flow 
optimisation 
task, aiming to 
minimise overall 
costs while 
satisfying 
demand across 
a network. 

Efficient cost 
minimisation; 
scalable for large 
networks; 
mathematically 
robust. 

Complexity in non-
linear optimisation; 
sensitive to initial 
conditions and 
parameter settings. 

 
Markov Decision 
Process (MDP) 
Framework 

Ni et al. (2022) 

Uses MDP to 
model 
sequential 
decision-making 
in pricing under 
uncertainty, 
capturing state 
transitions and 
reward 
structures over 
time. 

Provides a 
structured 
approach for 
sequential 
decision-making; 
effectively 
captures 
uncertainty in 
dynamic 
environments. 

Computationally 
intensive; may 
require 
simplifications and 
approximations to 
remain tractable. 

 
Game-
Theoretical 
Analysis 

Bernstein et al. 
(2020); Siddiq 
et al. (2020); 
Zhong et al. 
(2022) 

Analyses 
strategic 
interactions 
among market 
participants to 
determine 

Captures 
competitive 
behaviours; 
useful for policy 
and market 

Relies on 
assumptions about 
rational behaviour; 
may not fully capture 
complex, real-world 
market dynamics. 
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Category 
Dynamic Pricing 

Method Used 
Key Studies Core Features Strengths Challenges 

equilibrium 
pricing strategies 
and competitive 
dynamics. 

structure 
analysis. 

 
Stochastic 
Spatiotemporal 
Pricing (SSP) 
Mechanism 

Cashore et al. 
(2022) 

Employs 
stochastic 
models that 
adjust pricing 
based on spatial 
and temporal 
demand 
variations, 
addressing 
fluctuations 
across regions 
and times. 

Robust to 
fluctuations in 
demand across 
time and space; 
enhances pricing 
resilience. 

Requires high-
resolution data, 
complex calibration, 
and sensitivity to 
spatial heterogeneity. 

Statistical 
Analysis and 
Forecasting 

Multivariate 
Extreme Value-
Based Discrete 
Choice Model 
with Sampling 
and Endogeneity 
Corrections 

Krueger et al. 
(2023); Hadas 
et al. (2023) 

Utilises 
advanced 
discrete choice 
models that 
account for 
extreme values 
and correct for 
potential 
endogeneity in 
consumer 
decision data. 

Provides detailed 
insights into 
consumer 
decision-making; 
robust to certain 
data issues and 
biases. 

Computationally 
intensive; sensitive to 
model specification 
and estimation 
challenges. 

 
Macroscopic 
Fundamental 
Diagram (MFD) 

Zheng & 
Geroliminis 
(2016); Zheng 
& Geroliminis 
(2020); Genser 
& Kouvelas 
(2022) 

Uses aggregated 
traffic flow data 
to derive 
relationships 
between traffic 
density and flow, 
informing 
dynamic pricing 
and congestion 
management 
strategies. 

Offers a high-
level view of 
traffic dynamics; 
effective for 
managing 
congestion on a 
macro scale. 

May oversimplify 
local and 
heterogeneous 
network dynamics; 
limited granularity. 

 
Contingent 
Valuation 
Method (CVM) 

Haywood & 
Koning (2015) 

It uses survey-
based 
techniques to 
estimate users’ 
willingness to 
pay for dynamic 
pricing services, 
capturing 
consumer 

Direct 
measurement of 
consumer 
preferences; 
valuable for 
policy evaluation 
and pricing 
decisions. 

Subject to response 
biases; limited by 
survey design and 
sample 
representativeness. 
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Category 
Dynamic Pricing 

Method Used 
Key Studies Core Features Strengths Challenges 

preferences and 
price sensitivity. 

 

5. Conclusion 

This paper examined the impact of dynamic pricing on the performance of SAVs integrated within 
MaaS platforms. We aimed to identify and understand the benefits of adopting a dynamic pricing 
strategy for on-demand SAVs within urban public transportation systems.  

Using a systematic review methodology guided by PRISMA 2020, we searched multiple academic 
and grey literature sources, applied strict inclusion criteria, and extracted key data points from 183 
documents. We organised our insights around four thematic areas: economic viability, operational 
efficiency, user accessibility, and environmental impact.  

The literature shows that dynamic pricing drives revenue growth, optimises fleet utilisation, reduces 
passenger wait times, and cuts operational costs through more efficient resource allocation. It also 
smooths demand and reduces congestion, contributing to lower emissions and a cleaner urban 
environment. However, these benefits come with important trade-offs. For instance, some 
researchers highlight that dynamic pricing exacerbates social inequalities by disproportionately 
affecting low-income users during peak periods when fares are relatively high. Public transport 
operators should consider including safeguards such as fare caps during peak periods and 
discounts during off-peak times to keep transportation affordable. 

Our review also highlights the potential of advanced pricing algorithms and robust data analytics to 
forecast demand spikes, adjust fares in real-time, and adapt to changing market conditions—all 
while maintaining service quality and reliability. Although no single “best” technique exists, many 
researchers consider reinforcement learning a promising tool due to its ability to learn from past 
outcomes and dynamically adjust pricing strategies. 

We identified several research gaps. Much of the current literature centres on privately operated 
ride-hailing services, leaving a notable gap regarding dynamic pricing applications in publicly 
managed transport services such as SAV fleets. This gap reveals a need for future research to tailor 
dynamic pricing models to public transportation contexts. Also, understanding user perceptions and 
acceptance in a public sector context, where expectations for fare stability differ from those in the 
private market, remains an essential avenue for investigation.  Furthermore, many studies assess 
performance dimensions in isolation rather than using a multidimensional framework that integrates 
economic, operational, social, and environmental impacts. Addressing these gaps through 
comprehensive, integrated research will provide a more holistic evaluation of dynamic pricing’s 
potential benefits and trade-offs. 

From a policy standpoint, implementing dynamic pricing in public transportation demands a careful 
balance between profitability goals and affordability considerations. Policymakers must invest in 
robust technological infrastructures that support real-time pricing while simultaneously adopting 
measures to protect vulnerable users. Transparent communication and public education about the 
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benefits and mechanics of dynamic pricing will be crucial in building trust and securing public buy-
in. 

Dynamic pricing offers immense potential for improving the performance of SAVs within MaaS. By 
designing and implementing a dynamic pricing strategy harmonising economic objectives with 
social and environmental goals, PTAs and PTOs can create more efficient, accessible, and 
sustainable shared mobility services within the MaaS framework. However, methods for developing 
the dynamic pricing strategy must be carefully chosen and developed specifically with the ability to 
rapidly adapt to changes in customers’ willingness to pay while balancing economic objectives with 
operational and social impacts. 
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